Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở các dạng bài này bạn rút gọn đến khi không còn biến x => giá trị biểu thức không đổi
a) (2x+6)(4x^2-12x+36) -8x^3 +5
= 8x^3 -24x^2 + 72x + 24x^2 - 72x - 8x^3 + 5
= 5 ( không đổi)
=> Giá trị của biểu thức không phụ thuộc vào giá trị của biến x
1. (2x + 6 ) (4x2 - 12x + 36)-8x3 + 5
= 8x3 - 24x2 + 72x + 24x2 - 72x - 8x3 + 5
= (8x3 - 8x3) + (-24x2 + 24x2) + (72x - 72x) + 5
= 5
\(\Rightarrow\) Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. (x - 1)3 - (x - 3) (x2 + 3x + 9) - 3x (1 - x )
= (x - 1)3- (x - 3) (x2+ x . 3 + 32) - 3x + 3x2
= x3 - 3x2 .1 +3x.12 -13 - x3 - 33 - 3x + 3x2
= (x3-x3) + (-3x2 + 3x2) + (3x - 3x) + (-13 - 33)
= -28
Vậy giá trị của biểu thức trên không phụ thuộng vào biến.
3. (2x - 3) (3x2 + 1) - 6x (x2 - x + 1 ) + 3x2 + 4x
= 6x3 + 2x -9x2 - 3 - 6x3 + 6x2 - 6x + 3x2 + 4x
= (6x3- 6x3) + (-9x2 + 6x2 + 3x2) + (2x - 6x + 4x) -3
= -3
Vậy giá trị của biểu thức trên không phụ thuộc vào biến
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
a,\(\dfrac{4x^3-8x^2+3x-6}{12x^3+4x^2+9x+3}=\dfrac{4x^2\left(x-2\right)+3\left(x-2\right)}{\text{ }\left(3x+1\right)4x^2+3\left(3x+1\right)}\)
=\(\dfrac{\left(4x^2+3\right)\left(x-2\right)}{\left(4x^2+3\right)\left(3x+1\right)}=\dfrac{x-2}{3x+1}\)
b: \(=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{x^2\left(x+2\right)-\left(x+2\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\dfrac{x^2+1}{x+2}\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
Bài 1:
a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)
\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)
\(\Leftrightarrow94x=17\)
\(\Leftrightarrow x=\dfrac{17}{94}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)
b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)
\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)
\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)
\(\Leftrightarrow33x^2+40x+4=52\)
\(\Leftrightarrow33x^2+40x=48\)
...
Bài 1 có ng làm rồi nên mình không làm nx nhé.
2) a) Rút gọn
P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)
P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)
P= \(-33x\)
b) |x| = 2
\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66
Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66
c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)
Bài 3: Giải
f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )
f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x
Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
1)
a) \(x^2+12x+36=\left(x+6\right)^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Tick nha
3)
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8\)
\(\Leftrightarrow-2x=7\)
\(\Rightarrow x=\dfrac{-7}{2}\)
b) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2\right)-5x+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-10x^2+2x+4x^2-5x+1=28\)
\(\Leftrightarrow0-3x^2+23x+28=28\)
\(\Leftrightarrow-3x^2+23x=0\)
\(\Leftrightarrow-x\left(3x-23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-23=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{3}\end{matrix}\right.\)
c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6-2x^4-2x^2-1=0\)
\(\Leftrightarrow-5x^4+x^2-2=0\)
Đặt \(-5t^2+t-2=0\)
\(\Delta=1^2-4\left(-5\right)\left(-2\right)=-39< 0\)
\(\Rightarrow PTVN\)
Điều kiện: x ≠ 1
M = 4 x 2 − 3 x + 5 x 3 − 1 − 1 − 2 x x 2 + x + 1 − 6 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − 1 − 2 x x 2 + x + 1 − 6 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − 1 − 2 x x − 1 x 2 + x + 1 − 6 x 2 + x + 1 x − 1 = 4 x 2 − 3 x + 5 x − 1 x 2 + x + 1 − x − 1 − 2 x 2 + 2 x x 2 + x + 1 − 6 x 2 + 6 x + 6 x − 1 = 4 x 2 − 3 x + 5 + 2 x 2 − 3 x + 1 − 6 x 2 − 6 x − 6 x − 1 x 2 + x + 1 = − 12 x x 3 − 1
Đáp án cần chọn là A