Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 1 :
a, n + 1 là ước của 15
Vì n + 1 là ước của 15 nên \(n+1\inƯ\left(15\right)\)
hay \(n+1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
Vậy \(n\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
b, n + 5 là ước của 12
Vì n + 5 là ước của 12
\(\Rightarrow n+5\inƯ\left(12\right)\)
hay \(n+5\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(\Rightarrow n\in\left\{-4;-6;-3;-7;-2;-8;-1;-9;1;-11;7;-17\right\}\)
Vậy \(n\in\left\{-4;-6;-3;-7;-2;-8;-1;-9;1;-11;7;-17\right\}\)
~ Học tốt ~
Bn ơi nếu có trong sgk thì bn cs thể tham khảo ở vietjack hoặc lời giải hay nha
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
8chia hết (n+1)
\(\Leftrightarrow\)n+1 \(\in\)Ư(8)
Ư(8)=\(\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
TH1 :n+1=1 \(\Leftrightarrow\)n=0
TH2:n+1=2 \(\Leftrightarrow\) n=1
TH3:n+1=4 \(\Leftrightarrow\)n=3
TH4:n+1=8 \(\Leftrightarrow\)n=7
TH5:n+1=-1 \(\Leftrightarrow\)n=-2
TH6:n+1=-2 \(\Leftrightarrow\)n=-3
TH7:n+1=-4 \(\Leftrightarrow\)n=-5
TH8:n+1=-8 \(\Leftrightarrow\)n=-9
Vậy n=\(\left\{0;1;3;7;-2;-3;-5;-9\right\}\)
a)8 chia hết n+1
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{1;2;4;8\right\}\left(n\in N\right)\)
\(\Rightarrow n\in\left\{0;1;3;7\right\}\)
b)tương tự
c)n-2 là ước 15
=>15 chia hết n-2
=>n-2 thuộc Ư(15)={±1;±3;±5;±15}
=>n thuộc...
- Vì n thuộc ước của 5 nên: \(n-1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
Vậy \(n\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)