Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải sẽ dài lắm nhé
x1,x2 là hai nghiệm của \(P(x)\)nên :
\(P(x_1)=ax_1^2+bx_1+c=0\) \((1)\)
\(P(x_2)=ax^2_2+bx^2+c=0\)
\(P(x_1)-P(x_2)=a\left[x^2_1-x^2_2\right]+b\left[x_1-x_2\right]=0\)
\(a\left[x_1+x_2\right]\left[x_1-x_2\right]+b\left[x_1-x_2\right]=0\)
\(\left[x_1-x_2\right]\left[a\left\{x_1+x_2\right\}+b\right]=0\)
Vì x1 \(\ne\)x2 nên x1 - x2 \(\ne\)0 do đó
\(a\left[x_1+x_2\right]+b=0\Rightarrow b=-a\left[x_1+x_2\right]\) \((2)\)
Thế 2 vào 1 ta được :
\(ax^2_1-a\left[x_1+x_2\right]\cdot x_1+c=0\)
\(\Rightarrow c=ax_1\left[x_1+x_2\right]-ax^2_1=ax_1x_2\) \((3)\)
Thế 2 vào 3 vào P\((x)\)ta được :
\(P(x)=ax^2+bx+c=ax^2-ax\left[x_1+x_2\right]+ax_1x_2\)
\(=ax^2-axx_1-axx_2+ax_1x_2=a\left[x^2-xx_1-xx_2+x_1x_2\right]\)
\(=a\left[x\left\{x-x_1\right\}-x_2\left\{x-x_1\right\}\right]=a\left[x-x_1\right]\left[x-x_2\right]\)
Vậy : ....
x1=a; x2=b
a)
(a+1)^2>=4a^2=(2a)^2
<=>(a+1-2a)(a+1+2a)>=0
<=>(1-a)(3a+1)>=0
a€[0;1]
3a+1>0
1-a>=0
=>dpcm
Chắc là \(q\left(x\right)=x^2-4????\)
\(f\left(2\right)=2^5+2^2+1=37\) ; \(f\left(-2\right)=-27\)
Do \(f\left(x\right)\) có 5 nghiệm nên f(x) có dạng:
\(f\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
\(\Rightarrow f\left(2\right)=\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)=37\)
\(f\left(-2\right)=\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\left(-2-x_5\right)=-27\)
\(\Rightarrow\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)=27\)
\(A=\left(x_1^2-4\right)\left(x^2_2-4\right)\left(x_3^2-4\right)\left(x_4^2-4\right)\left(x^2_5-4\right)\)
\(A=-\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)\)
\(A=-37.27=-999\)
x1 ; x2 là 2 ngiệm của P(x) => P(x1) = P (x2) = 0
=> ax12 + bx1 + c = ax22 + bx2 + c = 0
=> ax12 + bx1 + c - ( ax22 + bx2 + c) = 0
<=> a. (x12 - x22 ) + b.(x1 - x2) = 0 <=> a. (x1 - x2). (x1 + x2) + b.(x1 - x2) = 0
<=> (x1 - x2). [ a.(x1 + x2) + b ] = 0 mà x1 ; x2 khác nhau nên a.(x1 + x2) + b = 0 => b = - a.(x1 + x2) (*)
+) ax12 + bx1 + c = 0 => c = - ( ax12 + bx1) = - x1. (ax1 + b) = - x1 . (-ax2) = ax1. x2 (Do (*))
vậy c = ax1.x2 (**)
Thay b ; c từ (*) và (**) vào P(x) ta được P(x) = ax2 -ax.(x1 + x2) + ax1.x2 = ax2 - ax.x1 - ax.x2 + ax1.x2
= ax. (x - x1) - ax2 . (x - x1) = (ax - ax2). (x - x1) = a. (x - x2). (x - x1) => ĐPCM