Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
a)Xét ▲ABC : D là trung điểm của AC,E là trung điểm của AB => DE là đường trung bình của ▲ABC=>ED//BC và ED=1/2BC(*)
Xét ▲GBC có GM/MB=GN/NC=1/2=>MN//BC(1) và MN=1/2 BC
▲GMN có GI/IM=GK/KN=1/2=>IK//MN(2) và IK=1/2 MN =>IK= 1/4 BC(**)
Từ (1) và (2): IK//BC =>IK//ED=>IEDK là hình thang
BD=CE(do▲ABC cân tại A)=>EK=DI(do EG=DG và KG=IG)
=>IEDK là hình thang cân
b)Từ (*) : ED=1/2BC=cm
Từ (**)IK=1/4 BC = 2.5 cm
=>DE+IK = 7.5 cm\
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
Xét tg ABC có :
E là trđ AB
D là trđ AC
Nên Ed là Đg TB của tg ABC
Nên ED // BC ; ED=1/2 BC (1)
Xét tg GBC có
M là trđ BG
N là trđ GC
nên MN là đg tb của tg GBC
MN //BC; MN=1/2BC (2)
từ (1) và (2) ED=MN; ED//MN nêm EDNM là HBH
A B C D E G M N
b) Vì CE;BD lần lượt là đườg trung tuyến của tam giác ABC và cắt nhau tại G (gt)
=>G là trọng tâm của tam giác ABC
Vì M trung điểm BG => MG=1/3BD
N trung điểm CG=> NG=1/3EC
Do đó: => BD=EC => AB=AC
=> tam giác ABC cân tại A
Vậy tam giác ABC cân tại A thì MNDE là hcn
Ta có hình vẽ:
A B C M N G E F
a/ Ta có: M là trung điểm BG
F là trung điểm AB
=> MF là đường trung bình
=> MF = 1/2 AG và MF // AG (1)
Ta có: N là trung điểm CG
E là trung điểm của AC
=> NE là đường trung bình
=> NE = 1/2 AG và NE // AG (2)
Từ (1) và (2) => MF // NE và MF = NE
Vậy MNEF là hình bình hành
b/ Để MNEF là hình chữ nhật thì
ME = NF => MG = NG => BE = CF
hay tam giác ABC cân tại A
Ôi.... Bn trả lời hết thế này thì còn chỗ nào cho bn mk trả lời nữa...-_-
bạn vẽ hình ra giấy rồi xem bài mình nhé
a) vì MF ; NE lần lượt là đường trung bình của tg BGA và CGA
=> MF // NE và MF = NE
=> FENM là hbhành
b) Nếu MNEF là hcn
=> FN = ME
mà FN = 2/3 FC ; EM = 2/3 BE
=> BE = CF
tg ABC có BE và CF là 2 đường trung tuyến ứng với cạnh AC và AB bằng nhau
=> tg ABC cân ở A
Hình bạn tự vẽ :>
a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)
Tương tự: \(\Delta GBC\) có MN là đường trung bình
\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành
b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)