K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Hình bạn tự vẽ :>

a, \(\Delta ABC\) có: \(\left\{{}\begin{matrix}AE=BE\left(gt\right)\\AD=DC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\) DE là đường trung bình \(\Rightarrow DE//BC\) và \(DE=\dfrac{BC}{2}\)

Tương tự: \(\Delta GBC\) có MN là đường trung bình

\(\Rightarrow MN//BC\) và \(MN=\dfrac{BC}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}DE//MN\\DE=MN\end{matrix}\right.\)\(\Rightarrow MNDE\) là hình bình hành

27 tháng 12 2018

b, Điều kiện của \(\Delta ABC\)là \(BD\perp CE\)

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

15 tháng 12 2021

TL:

a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD

Tương tự EG=GN suy ra MNDE là hình bình hành

15 tháng 12 2021

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

9 tháng 2 2019

a)Xét ▲ABC : D là trung điểm của AC,E là trung điểm của AB => DE là đường trung bình của ▲ABC=>ED//BC và ED=1/2BC(*)
Xét ▲GBC có GM/MB=GN/NC=1/2=>MN//BC(1) và MN=1/2 BC
▲GMN có GI/IM=GK/KN=1/2=>IK//MN(2) và IK=1/2 MN =>IK= 1/4 BC(**)
Từ (1) và (2): IK//BC =>IK//ED=>IEDK là hình thang
BD=CE(do▲ABC cân tại A)=>EK=DI(do EG=DG và KG=IG)
=>IEDK là hình thang cân
b)Từ (*) : ED=1/2BC=cm
Từ (**)IK=1/4 BC = 2.5 cm
=>DE+IK = 7.5 cm\

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

ko hiểu

23 tháng 12 2021

Xét tg ABC có :

E là trđ AB

D là trđ AC

Nên Ed là Đg TB của tg ABC

Nên ED // BC ; ED=1/2 BC (1)

Xét tg GBC có 

M là trđ BG

N là trđ GC

nên MN là đg tb của tg GBC

MN //BC; MN=1/2BC (2)

từ (1) và (2) ED=MN; ED//MN nêm EDNM là HBH

24 tháng 12 2021

A B C D E G M N

b) Vì CE;BD lần lượt là đườg trung tuyến của tam giác ABC và cắt nhau tại G (gt)

=>G là trọng tâm của tam giác ABC

Vì M trung điểm BG => MG=1/3BD

     N trung điểm CG=> NG=1/3EC

Do đó: => BD=EC => AB=AC

=> tam giác ABC cân tại A

Vậy tam giác ABC cân tại A thì MNDE là hcn

14 tháng 11 2017

Ta có hình vẽ:

A B C M N G E F

a/ Ta có: M là trung điểm BG

F là trung điểm AB

=> MF là đường trung bình

=> MF = 1/2 AG và MF // AG (1)

Ta có: N là trung điểm CG

E là trung điểm của AC

=> NE là đường trung bình

=> NE = 1/2 AG và NE // AG (2)

Từ (1) và (2) => MF // NE và MF = NE

Vậy MNEF là hình bình hành

b/ Để MNEF là hình chữ nhật thì

ME = NF => MG = NG => BE = CF

hay tam giác ABC cân tại A

14 tháng 11 2017

Ôi.... Bn trả lời hết thế này thì còn chỗ nào cho bn mk trả lời nữa...-_-

13 tháng 11 2016

bạn vẽ hình ra giấy rồi xem bài mình nhé

a) vì MF ; NE lần lượt là đường trung bình của tg BGA và CGA

=> MF // NE và MF = NE

=> FENM là hbhành

b) Nếu MNEF là hcn

=> FN = ME

mà FN = 2/3 FC ; EM = 2/3 BE

=> BE = CF

tg ABC có BE và CF là 2 đường trung tuyến ứng với cạnh AC và AB bằng nhau

=> tg ABC cân ở A