\(\text{ }T\text{ính }S\)

\(S=\dfrac{2}{1x2}+\dfrac{2}{2x3}+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2024

\(S=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+...+\dfrac{2}{99\times100}\)

\(=2\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{99\times100}\right)\)

\(=2\times\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=2\times\left(1-\dfrac{1}{100}\right)\)

\(=2\times\dfrac{99}{100}=\dfrac{99}{50}\)

CT: \(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a};\left(n\ne0;n\ne-a\right)\)

DT
15 tháng 6 2024

\(S=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+\dfrac{2}{3\times4}+...+\dfrac{2}{99\times100}\\ \dfrac{S}{2}=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{99\times100}\\ \dfrac{S}{2}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \dfrac{S}{2}=1-\dfrac{1}{100}=\dfrac{99}{100}\\ S=\dfrac{99}{100}\times2=\dfrac{99}{50}\)

26 tháng 7 2017

\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

26 tháng 7 2017

Dap an la 99/100.nho k cho minh.bai giai se gui sau

6 tháng 1 2016

\(\text{S}\)= 1 - \(\frac{1}{2}\)\(\frac{1}{2}\)-\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ .... + \(\frac{1}{99}\)\(\frac{1}{100}\)

\(S\)= ( 1 - \(\frac{1}{100}\)) : 2

\(S\)\(\frac{99}{100}\): 2 

\(S\)\(\frac{99}{200}\)

tick nhé Lê Thiên Hương

26 tháng 1 2016

99/200 dạng chuỗi mà bạn

9 tháng 6 2019

1. Đ/S: 99/100

2. Đ/S: 38/123

27 tháng 4 2018

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

27 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

~~~
#Sunrise

22 tháng 7 2018

S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

S=1-\(\frac{1}{2010}\)

S=\(\frac{2009}{2010}\)

k nha bn

22 tháng 7 2018

\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}\)

\(=\frac{2009}{2010}\)

Vậy \(S=\frac{2009}{2010}\)

Học tốt #

a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)

a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)

15 tháng 6 2016

1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

9 tháng 6 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow M=1-\frac{1}{100}\)

\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)

8 tháng 6 2018

\(a,M=1-\frac{1}{100}=\frac{99}{100}\)

\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)

                  \(=1-\frac{1}{99}=\frac{98}{99}\)

   =>\(N=\frac{98}{99}:2=\frac{49}{99}\)