Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Có 520 số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,7.
# Hok tốt !
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
Gọi \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\)
\(4A=1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\)
\(4A-A=\left(1+\frac{1}{4}+\frac{1}{16}+...+\frac{1}{4^{n-1}}\right)-\left(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}\right)\)
\(3A=\left(1-\frac{1}{4^n}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{4^n}\right):3\) hay \(A=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
Vậy \(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{4^n}=\left(1-\frac{1}{4^n}\right).\frac{1}{3}\)
ĐK: \(x\ne\frac{k\pi}{2}\)
pt<=> \(8\sin x-\frac{4}{\sin x}=\frac{3}{\cos x}-\frac{3}{\sin x}\)
<=> \(4.\frac{2\sin^2x-1}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)
\(\Leftrightarrow4.\frac{\sin^2x-\cos^2x}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)
\(\Leftrightarrow4.\left(\sin x+\cos x\right)\left(\sin x-\cos x\right)=3\frac{\sin x-\cos x}{\cos x}\)
\(\Leftrightarrow\orbr{\begin{cases}\sin x-\cos x=0\left(1\right)\\4\left(\sin x+\cos x\right)=\frac{3}{\cos x}\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=0\) ( tự giải nhé)
(2) \(\Leftrightarrow4\sin x.\cos x+4\cos x.\cos x=3\)
\(\Leftrightarrow2\sin2x+2\cos2x+2=3\)
\(\Leftrightarrow\sin2x+\cos2x=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}\cos\left(2x+\frac{\pi}{4}\right)=\frac{1}{2}\)Tự giải nhé!
Chọn C.
+) Nếu số lá sen ngày đâù là 1= 30 thì số lá sen ngày thứ 2 là 1.3 = 31; số lá sen ngày thứ ba là 3.3 = 32 ...số lá sen ngày thứ 10 là 39 .
Như vậy để hồ đầy lá sen thì cần 39 lá.
+) Nếu ngày đầu có u1 = 9 lá thì ngày thứ 2 có: 9.3 = 27 lá; ngày thứ 3 có: 27.3 = 81 lá...
Do đó; số lá sen mỗi ngày có trong hồ là 1 cấp số nhân với u1 = 9, q = 3.
Số hạng thứ n là un = u1.qn-1 = 9.3n-1.
Để hồ đầy lá sen thì cần 39 lá
⇒ 9.3n-1 = 310 ⇒ n + 1 = 9 ⇒ n = 8
Vậy đến ngày thứ 8 thì hồ sẽ đầy lá.