Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\geq 0$
Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:
$a-b-ab=a^2-2b^2$
$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$
$\Leftrightarrow (a-b)(a+2b-1)=0$
$\Leftrightarrow a=b$ hoặc $a+2b=1$
Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)
Nếu $a+2b=1$
$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$
$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$
Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$
$\Leftrightarrow x=0$
Vậy.......
a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)
\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)
\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)
Ta có:
\(\Rightarrow t^2+3t-10=0\)
\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)
thay \(t=2\) vào (1), ta có :
\(\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)
\(\Rightarrow x_1=1;x_2=-4\)
vậy phương trình có 3 nghiệm x1 = 1, x2 = -4
b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)
Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)
ta có :...............
mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế: \(9+2\sqrt{-x^2+9x}=-x^2+9x+9\)
Đặt \(\sqrt{-x^2+9x}=t\ge0\) pt trở thành:
\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\\x=\dfrac{9-\sqrt{65}}{2}\\x=\dfrac{9+\sqrt{65}}{2}\end{matrix}\right.\)
Đặt \(t=\sqrt{x}+\sqrt{1-x}\)\(\Rightarrow t^2=1+2\sqrt{x\left(1-x\right)}\)(\(t\ge0\))
\(pt:1+\frac{2}{3}\sqrt{x\left(1-x\right)}=\sqrt{x}+\sqrt{1-x}\)(\(0\le x\le1\))
\(\Leftrightarrow\frac{1}{3}\left(1+2\sqrt{x\left(1-x\right)}\right)+\frac{2}{3}=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow\frac{1}{3}t^2+\frac{2}{3}=t\)
\(\Leftrightarrow t^2+2-3t=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1=\sqrt{x}+\sqrt{1-x}\\2=\sqrt{x}+\sqrt{1-x}\end{matrix}\right.\)
TH1:\(1=\sqrt{x}+\sqrt{1-x}\Leftrightarrow1=1+\sqrt{x\left(1-x\right)}\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
TH2:\(2=\sqrt{x}+\sqrt{1-x}\Leftrightarrow4=1+\sqrt{x\left(1-x\right)}\Leftrightarrow3=\sqrt{x\left(1-x\right)}\)
\(-x^2+x-9=0\)(vô nghiệm)
Vậy pt có nghiệm x = 0 , x = 1 .