K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2022

`\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}`   `ĐK: x >= -3`

`=\sqrt{(\sqrt{x+3})^2+2.\sqrt{x+2}.3+3^2}-\sqrt{(\sqrt{x+3})^2-2.\sqrt{x+2}.3+3^2}`

`=\sqrt{(\sqrt{x+3}+3)^2}-\sqrt{(\sqrt{x+3}-3)^2}`

`=|\sqrt{x+3}+3|-|\sqrt{x+3}-3|`

`=\sqrt{x+3}+3-|\sqrt{x+3}-3|`

`@` Với `\sqrt{x+3}-3 >= 0<=>\sqrt{x+3} >= 3<=>x+3 >= 9<=>x >= 6` (t/m)

    `=>\sqrt{x+3}+3-|\sqrt{x+3}-3|=\sqrt{x+3}+3-\sqrt{x+3}+3=6`

`@` Với `\sqrt{x+3}-3 < 0<=>\sqrt{x+3} < 3<=>x+3 < 9<=>x < 6`

                                    Kết hợp đk `x >= -3 =>-3 <= x < 6`

   `=>\sqrt{x+3}+3-|\sqrt{x+3}-3|=\sqrt{x+3}+3-3+\sqrt{x+3}=2\sqrt{x+3}`

\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) \(\left(ĐKXĐ:x\ge-3\right)\)

\(=\sqrt{\left(x+3\right)+2\sqrt{x+3}.3+9}-\sqrt{\left(x+3\right)-2\sqrt{x+3}.3+9}\)

\(=\sqrt{\left[\left(\sqrt{x}+3\right)+3\right]^2}-\sqrt{\left[\left(\sqrt{x}+3\right)-3\right]^2}\)

\(=|\left(\sqrt{x}+3\right)+3|-|\left(\sqrt{x}+3\right)-3|\)

\(=\left(\sqrt{x}+3\right)+3-\left(\sqrt{x}+3\right)+3=6\) ( Với \(x\ge-3\) ) 

 

a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)

b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)

\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)

g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)

 

27 tháng 10 2020

Để \(\sqrt{x}\) xác định

 \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow-7x\le0\)

\(\Rightarrow\sqrt{-7x}\)không tồn tại 

\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại

=> A không tồn tại 

14 tháng 8 2019
https://i.imgur.com/DklTh9L.jpg
14 tháng 8 2019

Thanks

19 tháng 6 2019

a.

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}\)

\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{9}-\sqrt{7}}{9-7}\)

\(=\frac{\sqrt{9}-\sqrt{7}+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{1}}{2}\)

\(=\frac{3-1}{2}=1\)

b.

\(B=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)

c.

\(C=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)

\(=\frac{15\sqrt{6}-15}{6-1}+\frac{4\sqrt{6}+8}{6-4}-\frac{36+12\sqrt{6}}{9-6}-\sqrt{6}\)

\(=\frac{15\sqrt{6}-15}{5}+\frac{4\sqrt{6}+8}{2}-\frac{36+12\sqrt{6}}{3}-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

20 tháng 8 2019

d)D=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)( \(x\ge2\))

=\(\sqrt{x+2\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2\sqrt{2}.\sqrt{x-2}}\)

=\(\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}\)

=\(\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

=\(\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)(1)

TH1: \(2\le x\le4\)

Từ (1)<=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}\)

=\(2\sqrt{2}\)

TH2. x\(>4\)

Từ (1) <=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{2}+\sqrt{x-2}\)=\(2\sqrt{x-2}\)

Vậy \(\left[{}\begin{matrix}2\le x\le4\\x>4\end{matrix}\right.< =>\left[{}\begin{matrix}D=2\sqrt{2}\\D=2\sqrt{x-2}\end{matrix}\right.\)

10 tháng 3 2020

mình sửa đề câu 1 

\(x^2-3x-6+\sqrt{x^2-3x}=0\)

\(ĐK:x\le12\)

Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)

PT trở thành a+b=6

Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)

Đến đây đơn giản rồi nhé

Bài 1:

a) Ta có: \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)

\(=\sqrt{3}\cdot9-\frac{1}{2}\cdot\sqrt{3}\cdot2-2\cdot\sqrt{3}\cdot5+\sqrt{3}\cdot3\)

\(=\sqrt{3}\left(9-1-10+3\right)\)

\(=\sqrt{3}\cdot1=\sqrt{3}\)

b) Ta có: \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)

\(=\frac{\left(2\sqrt{3}-3\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(\sqrt{3}+\sqrt{2}\right)}+\frac{5\cdot\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\sqrt{36\cdot\frac{1}{6}}\)

\(=-\sqrt{6}+\frac{5\left(\sqrt{6}-1\right)}{5}-\sqrt{6}\)

\(=-2\sqrt{6}+\sqrt{6}-1\)

\(=-\sqrt{6}-1\)

Bài 2: Rút gọn

Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

18 tháng 7 2017

1)

a)

\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)

\(A=3-\sqrt{2}+3+\sqrt{2}=6\)

b)

\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)

\(B=\sqrt{44}=2\sqrt{11}\)