Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :
\(6x-9x^2=a^2-b^2\)
PT tương đương:
\(a+b=a^2-b^2\)
\(\Leftrightarrow (a+b)[1-(a-b)]=0\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)
+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)
Vì \(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà
\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)
\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)
\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)
Vì \((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:
\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)
Thử lại thấy đúng.
Vậy \(x=\frac{1}{3}\)
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\)\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)
\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)
Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)
b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)
Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
ĐKXĐ: \(\frac{1}{3}\le x\le\frac{2}{3}\)
Đặt: \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\)(a, b ≥0) ta có:
\(a+b=a^2-b^2\Rightarrow a+b=\left(a+b\right)\left(a-b\right)\)
⇒ \(\left(a+b\right)\left(a-b-1\right)=0\)
⇔ \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)
✘Với \(a=-b\) thì \(a=b=0\) ⇔ Không tìm được x thỏa mãn
✔Với \(a=b+1\) ⇔ \(\sqrt{6x-1}=\sqrt{9x^2-1}+1\)
⇔ \(6x-1=9x^2+2\sqrt{9x^2-1}\)
⇔ \(\left(3x-1\right)^2=-2\sqrt{9x^2-1}\) (1)
Vế trái của (1) ≥ 0; Vế phải của (1) ≤ 0
⇔ Cả hai vế = 0. Dấu "=" xảy ra khi \(x=\frac{1}{3}\) (t/m ĐKXĐ)
Vậy \(x=\frac{1}{3}\)
ĐKXĐ:\(x\ge\frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a>0;\sqrt{9x^2-1}=b\ge0\Rightarrow a^2-b^2=6x-9x^2\)
PT \(\Leftrightarrow a+b=a^2-b^2\Leftrightarrow\left(a-b-1\right)\left(a+b\right)=0\)
Dễ thấy: \(a+b>0\) (do cách đặt)
Nên \(a=b+1\)
...