K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Mình làm luôn nhé :

\(\sqrt{45-2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5-\sqrt{45+2.2.\sqrt{2}.3\sqrt{5}+8}}\left(\sqrt{3}+\sqrt{5}\right).\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{7+2.\sqrt{7}.\sqrt{3}+3}\) Tới đây dễ rồi , bạn tự nhóm HĐT là ra ::v

5 tháng 7 2018

Căn bậc hai. Căn bậc baà

5 tháng 7 2018

chữ "à" ?

Bài 1:

a) Ta có: \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{45-2\cdot\sqrt{45}\cdot1+1}-\sqrt{9-2\cdot\sqrt{9}\cdot\sqrt{20}+20}\)

\(=\sqrt{\left(\sqrt{45}-1\right)^2}-\sqrt{\left(3-\sqrt{20}\right)^2}\)

\(=\left|\sqrt{45}-1\right|-\left|3-\sqrt{20}\right|\)

\(=\sqrt{45}-1-3+\sqrt{20}\)

\(=\sqrt{45}+\sqrt{20}-4\)

\(=\sqrt{5}\left(3+2\right)-4=5\sqrt{5}-4\)

b) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{8}+8}-\sqrt{45+2\cdot\sqrt{45}\cdot\sqrt{8}+8}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{8}\right)^2}-\sqrt{\left(\sqrt{45}+\sqrt{8}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{8}\right|-\left|\sqrt{45}+\sqrt{8}\right|\)

\(=\sqrt{8}-\sqrt{5}-\sqrt{45}-\sqrt{8}\)

\(=-\sqrt{5}-\sqrt{45}=-\sqrt{5}\left(1+\sqrt{9}\right)=-4\sqrt{5}\)

c) Ta có: \(\left(3-\sqrt{2}\right)\cdot\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\)

\(=\left(3-\sqrt{2}\right)\cdot\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(\sqrt{3}+2\right)\)

\(=3\sqrt{3}+6-\sqrt{6}-2\sqrt{2}\)

d) Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10+2\sqrt{21}}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{3}+3}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\cdot\left(\sqrt{7}+\sqrt{3}\right)\)

\(=\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2=7-3=4\)

1: \(=\sqrt{36}=6\)

2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)

3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)

4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)

14 tháng 6 2019

\(13-2\sqrt{42}=7-2\sqrt{42}+6\\ =\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{7}-\sqrt{6}\right)^2\)

\(46+6\sqrt{5}=\left(5+2\cdot\sqrt{5}\cdot3+9\right)+32=\left(\sqrt{5}+3\right)^2+32\)(ko rút đc)

\(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\\ =\sqrt{3-\sqrt{5}}\cdot\sqrt{2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{5-2\sqrt{5}+1}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\\ =\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\\ =4\left(3+\sqrt{5}\right)\)

NV
15 tháng 6 2019

\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}\sqrt{3-\left(\sqrt{3}+1\right)}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Dễ dàng nhận ra

\(\sqrt{\sqrt{7}-\sqrt{3}}< \sqrt{\sqrt{7}+\sqrt{3}}\Rightarrow\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}< 0\)

Đặt \(x=\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}< 0\)

\(\Rightarrow x^2=\frac{\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}}{\sqrt{7}-2}\)

\(\Rightarrow x^2=\frac{2\sqrt{7}-2\sqrt{4}}{\sqrt{7}-2}=\frac{2\sqrt{7}-4}{\sqrt{7}-2}=\frac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)

\(\Rightarrow x=-\sqrt{2}\) (do \(x< 0\))

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

27 tháng 6 2017

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

29 tháng 5 2018

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với

24 tháng 6 2017

a) \(\sqrt{12-2\sqrt{35}}=\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}=\sqrt{7}-\sqrt{5}\)

b) \(\sqrt{4+\sqrt{15}}=...\)

c) \(\left(3-\sqrt{2}\right)\sqrt{11+6\sqrt{2}}=\left(3\sqrt{2}\right)\sqrt{\left(3+\sqrt{2}\right)^2}\\ =\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)=9-2=7\)

d) \(\left(\sqrt{5}+\sqrt{7}\right)\sqrt{12-2\sqrt{35}}=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}\\ =\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=7-5=2\)

e) \(\sqrt{7-2\sqrt{10}-\sqrt{7+2\sqrt{10}}}=\sqrt{7-2\sqrt{10}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\\ =\sqrt{7-2\sqrt{10}-\left(\sqrt{2}+\sqrt{5}\right)}=\sqrt{7-2\sqrt{10}-\sqrt{2}-\sqrt{5}}\\ =\sqrt{7-2\sqrt{10}-\sqrt{2}-\sqrt{5}}\)

f) \(\sqrt{13-\sqrt{160}+\sqrt{53}+4\sqrt{90}}=\sqrt{13-4\sqrt{10}+\sqrt{53}+12\sqrt{10}}\\ =\sqrt{13+8\sqrt{10}+\sqrt{53}}\)

24 tháng 6 2017

c.ơn ạ <3 giải hộ mình vài câu nữa nhé ?