K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

4. đặt \(\sqrt[3]{x+24}=a\) và \(\sqrt{12-x}=b\)(b>=0)

==>ta có hệ pt 

\(\int_{a^3+b^2=36}^{a+b=6}\)<=> \(\int_{a^3+\left(6-a\right)^2=36}^{b=6-a}\)<=> \(\int_{b=6-a}^{a^3+a^2-12a=0}\)<=> \(\int_{b=6-a}^{a\left(a^2+a-12\right)=0}\)<=>\(\int_{b=6-a}^{a\left(a+4\right)\left(a-3\right)=0}\)

đến đây bạn tự tìm a;b rufit hay vào tìm x là ok

29 tháng 6 2019

3. \(\Leftrightarrow\sqrt[3]{2x^2}-\sqrt[3]{x+1}+\sqrt[3]{2x^2+1}-\sqrt[3]{x+2}=0\)

\(\Leftrightarrow\frac{2x^2-x-1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{2x^2-x-1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}=0\)

\(\Leftrightarrow2x^2-x-1=0\)

( do \(\frac{1}{\sqrt[3]{4x^4}+\sqrt[3]{2x^2\left(x+1\right)}+\sqrt[3]{\left(x+1\right)^2}}+\frac{1}{\sqrt[3]{\left(2x^2+1\right)^2}+\sqrt[3]{\left(2x^2+1\right)\left(x+2\right)}+\sqrt[3]{\left(x+2\right)^2}}>0\forall xTMĐK\))

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=\frac{9}{8}\Leftrightarrow\left(x-\frac{1}{4}\right)^2=\frac{9}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}=\frac{3}{4}\\x-\frac{1}{4}=-\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{2}\end{matrix}\right.\) ( TM )

NV
15 tháng 7 2020

e/

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)

\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)

\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)

BPT trở thành:

\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)

\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)

\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x\ge4x+4\)

\(\Leftrightarrow x^2-6x-4\ge0\)

\(\Rightarrow x\ge3+\sqrt{13}\)

NV
15 tháng 7 2020

d/

ĐKXĐ: \(x\ge-1\)

\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow4a^2-b^2=4x^2-5x+3\)

BPT trở thành:

\(4a^2+3ab-b^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)

\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)

\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow16x^2+16x+4\ge x+1\)

\(\Leftrightarrow16x^2+15x+3\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)

NV
11 tháng 7 2020

d/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x^2-4+1-\sqrt{x-1}+2-\sqrt{2x}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\frac{2-x}{1+\sqrt{x-1}}+\frac{2\left(2-x\right)}{2+\sqrt{2x}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{1}{1+\sqrt{x-1}}-\frac{2}{2+\sqrt{2x}}\right)=0\)

\(\Leftrightarrow x=2\)

(do \(x\ge1\Rightarrow\left\{{}\begin{matrix}x+2\ge3\\\frac{1}{1+\sqrt{x-1}}\le1\\\frac{2}{2+\sqrt{2x}}< 1\end{matrix}\right.\) \(\Rightarrow\) ngoặc phía sau luôn dương)

NV
11 tháng 7 2020

c/

\(\Leftrightarrow2\left(x^2+1\right)-\left(4x-1\right)\sqrt{x^2+1}+2x-1=0\)

Đặt \(\sqrt{x^2+1}=t\ge1\)

\(2t^2-\left(4x-1\right)t+2x-1=0\)

\(\Delta=\left(4x-1\right)^2-8\left(2x-1\right)=16x^2-24x+9=\left(4x-3\right)^2\)

Phương trình có 2 nghiệm: \(\left[{}\begin{matrix}t=\frac{4x-1-\left(4x-3\right)}{4}=\frac{1}{2}\left(l\right)\\t=\frac{4x-1+4x-3}{4}=2x-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x-1\) (\(x\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+1=4x^2-4x+1\)

\(\Leftrightarrow3x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}

21 tháng 8 2019

a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)

vậy với mọi x thì biểu thức trên luôn xác định.

b) Để .......

\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)

vậy biểu thức trên xác định khi x>1.

c) Để ..........

\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)

Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)

d) Để ........

\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)

Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)

e) Để ......

\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)

Vậy để btxđ khi ....

20 tháng 8 2019

Rồi yêu cầu đề bài đâu bạn. ?

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)