Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Bât đẳng thức cần chứng minh tương đương với :
( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz
Áp dụng bất đẳng thức Côsi ta có :
xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\) ( 1)
Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)
hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\) (2)
Do các vế đều dương ,từ (1) và (2) suy ra :
( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi x = y =z = 1
Bài 2:
\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)
Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)
=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)
a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:
\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)
\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)
Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
Mà \(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)
\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Từ giả thiết:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow ab+bc+ca=1\)
Ta có:\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)\(=\sqrt{\frac{1}{1+x^2}}+\sqrt{\frac{1}{1+y^2}}+\sqrt{\frac{1}{1+z^2}}\)
\(=\sqrt{\frac{\frac{1}{x}}{\frac{1}{x}+x}}+\sqrt{\frac{\frac{1}{y}}{\frac{1}{y}+y}}+\sqrt{\frac{\frac{1}{z}}{\frac{1}{z}+z}}\)\(=\sqrt{\frac{a}{a+\frac{1}{a}}}+\sqrt{\frac{b}{b+\frac{1}{b}}}+\sqrt{\frac{c}{c+\frac{1}{c}}}\)
\(=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Đến đây:\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{a+c}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự:\(\frac{b}{\sqrt{b^2+1}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{c^2+1}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
Cộng 3 bất đẳng thức lại ta có điều phải chứng minh :))
Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)
\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)
\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.