Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Vẽ tia tới BI song song với trục chính, tia ló ra đi qua tiêu điểm F'
Vẽ tia tới đi qua tiêu điểm F, tia ló ra song song với trục chính.
Giao của 2 tia ló ra là B'
Từ B' ta hạ vuông góc xuống trục chính thì được A'
b. Xét tam giác vuông ABF = tam giác vuông OIF' = tam giác vuông A'B'F'
Suy ra A'B' = AB = h
Khoảng cách d' = d.
Dựng ảnh của vật sáng AB qua thấu kính hội tụ. Dùng hai trong ba tia sáng đã học để dựng ảnh B’ của điểm B.
+ Vật AB cách thấu kính d = 2f, vật ngoài khoảng OF.
Tia BI đi song song với trục chính nên cho tia ló đi qua F’
Tia tới BO là tia đi quang tâm O nên cho tia ló đi thẳng
Hai tia ló trên giao nhau tại B’, ta thu được ảnh thật B’ của B qua thấu kính.
Từ B’ hạ vuông góc với trục của thấu kính, cắt trục chính tại điểm A’. A’ là ảnh của điểm A. A’B’ là ảnh của AB tạo bởi thấu kính hội tụ.
MÌNH THAM KHẢO NHÉ
a) Xét △ABO và △A′B′O có:
ABOˆ=A′B′Oˆ=900
BOAˆ=B′OA′ˆ (hai góc đối đỉnh)
⇒ Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
⇒ \(\frac{A'B'}{AB}=\frac{B'O}{BO}\)
⇒ Độ phóng đại ảnh \(k=\frac{A'B'}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự: Hai tam giác A'B'F' và IOF' là hai tam giác đồng dạng
⇒\(\text{ }\frac{B'F'}{OF'}=\frac{A'B'}{IO}=\frac{d'}{d}\)
Áp dụng tính chất của tỉ lệ thức: \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
⇒\(\frac{1}{f}=\frac{1}{d}=\frac{1}{f'}\)
CÓ MẤY CÁI KÍ HIỆU GÓC, MÌNH KHÔNG BIẾT VIẾT, BẠN THÔNG CẢM
a) Xét \(\Delta ABO\) và \(\Delta A'B'O'\)
\(ABO=A'B'O=90^0\)
\(BOA=B'O'A\)( hai góc đối đỉnh )
\(\Rightarrow\)Hai tam giác ABO và A'B'O là hai tam giác đồng dạng
\(\Rightarrow\frac{A'B}{AB}=\frac{B'O}{BO}\)
\(\Rightarrow\)Độ phóng đại ảnh : \(k=\frac{A'B}{AB}=\frac{h'}{h}=\frac{d'}{d}\)
b) Tương tự : Hai tam giác A'B'F và IOF' là hai tam giác đồng dạng
\(\Rightarrow\frac{B'F'}{OF}=\frac{A'B}{TO}=\frac{d'}{d}\)
Dựa vào tính chất của tỉ lệ thức : \(\frac{B'F'+OF'}{OF'}=\frac{d'+d}{d}\)hay \(\frac{d'}{f}=\frac{d'+d}{d}\)
Hướng dẫn:
Nhận xét:
+ Vật AB cách thấu kính 36cm, ngoài khoảng tiêu cự, ảnh thật, ngược chiều vật
+ Khi vật AB cách thấu kính 8cm, trong khoảng tiêu cự, ảnh là ảo, cùng chiều vật và lớn hơn vật
Hướng dẫn:
Nhận xét:
+ Vật AB cách thấu kính 36cm, ngoài khoảng tiêu cự, ảnh thật, ngược chiều vật
+ Khi vật AB cách thấu kính 8cm, trong khoảng tiêu cự, ảnh là ảo, cùng chiều vật và lớn hơn vật
Hướng dẫn:
Nhận xét:
+ Vật AB cách thấu kính 36cm, ngoài khoảng tiêu cự, ảnh thật, ngược chiều vật
+ Khi vật AB cách thấu kính 8cm, trong khoảng tiêu cự, ảnh là ảo, cùng chiều vật và lớn hơn vật
Hướng dẫn:
Đặt một thấu kính hội tụ sát vào một trang sách, khi ấy các dòng chữ (coi là vật) sẽ nằm trong khoảng tiêu cự của thấu kính, cho hình ảnh các dòng chữ (là ảnh) sẽ cùng chiều và lớn hơn vật, do đó sẽ dễ đọc hơn. Từ từ dịch chuyển thấu kính ra xa, ảnh càng to và càng dễ đọc.
Tuy nhiên, khi dịch chuyển đến một vị trí nào đó, ta lại nhìn thấy ảnh của dòng chữ ngược chiều với vật. Đó là ảnh thật của dòng chữ tạo bởi thấu kính hội tụ. Vị trí đó trùng với tiêu điểm của thấu kính hội tụ, nên khi tiếp tục dịch chuyển ra xa thì dòng chữ (vật) nằm ngoài khoảng tiêu cự, cho ta ảnh ngược chiều, khó đọc
Từ hình vẽ, vì A ≡ F và tia tới BI song song với trục chính nên hình ABIO là hình chữ nhật có AI và BO là hai đường chéo cắt nhau tại trung điểm của mỗi đường → B’ là trung điểm của BO
Mà A’B’ // AB nên A’B’ là đường trung bình của tam giác ABO
a) Sử dụng hai trong ba tia đặc biệt để vẽ ảnh.
b) Dựa vào tam giác đồng dạng, suy ra h’ = h; d’ = d = 2f.
a. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\):
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = A'B' ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}\)
\(\Leftrightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{30}{OA'}=\dfrac{10}{OA'-10}\)
\(\Leftrightarrow OA'=15\left(cm\right)\)
Thay \(OA'=15\) vào (1) \(\Rightarrow\dfrac{30}{15}=\dfrac{2}{A'B'}\)
\(\Leftrightarrow A'B'=1\left(cm\right)\)
b. Khi vật dịch chuyển rất xa thấu kính thì cho ảnh thật cách thấu kính bằng tiêu cự là 10 cm
a) vì là TKHT mà theo đề thì ta có d (tức là OA) < f ,=> ảnh ảo, cùng chiều và lớn hơn vật
b)Xét tam giác OAB đồng dạng vs ta, giác OA'B'
=> h/h' = d/d' (AB/A'B'=OA/OA')..........(1)
xét tam giac F'OI đồng dạng vs tgiac F'A'B'
=> h/h' = f/(f+d') (( OI/A'B' = FO/(FO+FA')))..........(2)
từ 1 và 2 => d/d' =f/(f+d')
chia 2 vế cho dd'f => 1/d =1/f + 1/d'
theo đề có d và f => d'=12
thế d'=12, d=6, h=1 vào (1)
=>h'=2
F' A O A' B' I
a, Vẽ ảnh A'B'
A B A' B' F F' O I
b,
Gọi khoảng cách từ AB đến thấu kính là d, từ A'B' đến thấu kính là d'
Xét \(\Delta ABO \sim \Delta A'B'O\)
\(\Rightarrow \dfrac{AB}{A'B'}=\dfrac{BO}{B'O}=\dfrac{10}{d'}\)(1)
Xét \(\Delta IOF \sim \Delta A'B'F\)
\(\Rightarrow \dfrac{IO}{A'B'}= \dfrac{OF}{B'F}\)
Ta có: \(IO=AB\)
\(\Rightarrow \dfrac{AB}{A'B'}= \dfrac{14}{d'+14}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{10}{d'}=\dfrac{14}{d'+14}\)
\(\Rightarrow d'=35cm\)
Vậy ảnh cách thấu kính 35 cm
Thế vào (1) ta được: \(\Rightarrow \dfrac{AB}{A'B'}=\dfrac{10}{35}\Rightarrow A'B' = \dfrac{35.2}{10}=7(cm)\)
Vậy ảnh cao 7cm.
Trên hình 42-43.5a, xét hai cặp tam giác đồng dạng:
ΔABO và ΔA’B’O; ΔA’B’F’ và ΔOIF’.
Từ hệ thức đồng dạng được:
Vì AB = OI (tứ giác BIOA là hình chữ nhật)
Chia cả hai vế của (1) cho tích d.d’.f ta được:
(đây được gọi là công thức thấu kính cho trường hợp ảnh thật)
Thay d = 2f, ta tính được: OA’ = d’ = 2f = d
Thay vào (*) ta được:
Vậy d’ = d; h’ = h.