Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại điểm M là vân sáng nên \(x_M=ki=k\frac{\lambda D}{a}\)
\(\lambda=\frac{x_Ma}{kD}=\frac{4,2.0,5}{k.1,4}=\frac{1,5}{k}\)
Theo giả thiết: \(0,38\le\lambda\le0,76\)
\(\Rightarrow0,38\le\frac{1,5}{k}\le0,76\)
\(\Rightarrow1,97\le k\le3,94\)
k nguyên nên k = 2,3.
Như vậy, tại M có 2 bước sóng cho vân sáng, đáp án là A.
+ Xét tỉ số: \(\frac{x_M}{i}=3\)
\(\Rightarrow\) Tại M là vân sáng bậc 3.
Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có
A. vân sáng bậc 2
B. vân sáng bậc 4
C. vân sáng bậc 3
D. vân sáng thứ 4
Tại vị trí cách vân trung tâm 3 mm có vân sáng bậc \(k\) của bức xạ \(\lambda\) khi
\(x=3mm = ki =k\frac{\lambda D}{a}.\)
=> \(\lambda = \frac{3.a}{D k}.(1)\)
Mặt khác : \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)
<=> \(0,38 \mu m \leq \frac{3a}{kD} \leq 0,76 \mu m.\)
<=> \(\frac{3.0,8}{0,76.2} \leq k \leq \frac{3.0,8}{0,38.2} \)
Giữ nguyên đơn vị của \(x = 3mm; a = 0,8mm;\lambda = 0,76 \mu m;0,38 \mu m; D= 2m\)
<=> \(1,57 \leq k \leq 3,15.\)
<=> \(k = 2,3.\)
Thay vào (1) ta thu được hai bước sóng là \(\lambda_1 = \frac{3.0,8}{2.2}=0,6\mu m.\)
\(\lambda_2 = \frac{3.0,8}{3.2}=0,4\mu m.\)
Đổi đơn vị: \(\lambda_1=450n m= 0,45 \mu m.\)
\(\lambda_1=600n m= 0,6 \mu m.\)
Hai vân sáng trùng nhau khi \(k_1i_1=k_2i_2 \)
<=> \(\frac{k_1}{k_2}= \frac{i_1}{i_2}=>\frac{k_1}{k_2}= \frac{\lambda_1}{\lambda_2} =\frac{3}{4}\ \ (*)\)
Xét trong đoạn MN nên \(5,5 mm \leq x_s \leq 22mm. \)
<=> \(5,5 mm \leq k_1\frac{\lambda_1 D}{a} \leq 22mm. \)
<=> \(\frac{5,5.a}{\lambda_1 D} \leq k_1\leq \frac{22.a}{\lambda_1 D}\)
Giữ nguyên đơn vị của a = 0,5 mm; D = 2m; \(\lambda_1=0,45 \mu m.\)
<=> \(3,055 \leq k_1 \leq 12,22\)
Kết hợp với (*) ta có \(k_1\) chỉ có thể nhận giá trị : 3x2= 6; 3x3 = 9; 3x4 =12.
Như vậy có 3 vị trí trùng nhau của hai bức xạ trong đoạn MN.
Tóm tắt:
\(a=10^{-3}m\)
\(D=0,5m\)
\(\lambda_1=0,64\mu m\)
\(\lambda_2=0,6\mu m\)
\(\lambda_3=0,54\mu m\)
\(\lambda_4=0,48\mu m\)
\(\Delta x=?\)
Giải:
Khi vân sáng trùng nhau:
\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\) \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)
\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\) \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)
\(\Leftrightarrow k_132=k_230=k_327=k_424\)
BSCNN( 32;30;27;24 ) = 4320
\(k_1=\frac{4320}{32}=135\)
\(k_2=\frac{4320}{30}=144\)
\(k_3=\frac{4320}{27}=160\)
\(k_4=\frac{4320}{24}=180\)
Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)
\(\rightarrow D\)
\(i = \frac{\lambda D}{a}=\frac{0,5.2}{0,5}= 2mm.\)
Số vân sáng trên màn quan sát là
\(N_s= 2.[\frac{L}{2i}]+1 =2.6+1 = 13.\)
\( i = \frac{\lambda D}{a}= 0,64 mm.\)
Số vân tối quan sát được trên màn là
\(N_t = 2.[\frac{L}{2i}+0,5]=2.9=18.\)
Chú ý nên giữ nguyên đơn vị của a(mm); D(m); \(\lambda (\mu m)\)
Ví trí vân sáng đỏ bậc 2 và vân sáng tím bậc 2 lần lượt là
\(x_{sđỏ} = 2.i_{đỏ}= 2.\frac{\lambda_{đỏ}D}{a}.\)
\(x_{stím} = 2.i_{tím}= 2.\frac{\lambda_{tím}D}{a}.\)
=> \(x_{sđỏ}-x_{s tím}= 2.\frac{D}{a}(\lambda_{đỏ}-\lambda_{tím})=4,8mm.\)
Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)
Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)
Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\)
Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)
Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.
Vậy có 2 vân trùng,
Chọn đáp án B.