Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
Tìm số tự nhiên x, biết :
a) \(x:13=41\)
\(x=41.13\)
\(x=533\)
b) \(1428:x=14\)
\(x=1428:14\)
\(x=102\)
c) \(4x:17=0\)
\(4x=0.17\)
\(4x=0\)
\(x=0:4\)
\(x=0\)
d) \(7x-8=713\)
\(7x=713+8\)
\(7x=721\)
\(x=721:7\)
\(x=103\)
e) \(8\left(x-3\right)=0\)
\(\left(x-3\right)=0:8\)
\(x-3=0\)
\(x=0+3\)
\(x=3\)
g) \(0:x=0\)
\(x\) là số chia \(\Rightarrow x\ne0\). \(0:x=0\) \(\Rightarrow\) \(x.0=0\). Vì mọi số nhân với 0 đều bằng 0 nên \(x\in N;x\ne0\)
a) x : 13 = 41
=> x = 41 . 13
=> x = 533
b) 1428 : x = 14
=> x = 1428 : 14
=> x = 102
c) 4x : 17 = 0
=> 4x = 0 : 17
=> 4x = 0
=> x = 0 : 4
=> x = 0
d) 7x - 8 = 713
=> 7x = 713 + 8
=> 7x = 721
=> x = 721 : 7
=> x = 103
e) 8 ( x - 3 ) = 0
=> x - 3 = 0 : 8
=> x - 3 = 0
=> x = 0 + 3
=> x = 3
g) 0 : x = 0
=> x thuộc N*
a) \(2^3.2^x=64\Leftrightarrow8.2^x=64\Leftrightarrow2^x=\dfrac{64}{8}=8=2^3\Rightarrow x=3\)
vậy \(x=3\)
b) \(7.7^x=343\Leftrightarrow7^x=\dfrac{343}{7}=49=7^2\Rightarrow x=2\)
vậy \(x=2\)
c) \(7.7^{x+1}=343\Leftrightarrow7^{x+1}=\dfrac{343}{7}=49=7^2\Rightarrow x+1=2\Leftrightarrow x=1\)
vậy \(x=1\)
d) \(2^x-15=17\Leftrightarrow2^x=17+15=32=2^5\Rightarrow x=5\)
vậy \(x=5\)
e) \(x^{10}=1\Leftrightarrow x^{10}=1^{10}\Rightarrow x=1\)
vậy \(x=1\)
\(x^{10}=x\Leftrightarrow x^{10}-x=0\Leftrightarrow x\left(x^9-1\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^9-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy \(x=0;x=1\)
a) \(2^3.2^x=2^3.2^3\)
=> \(2^x=2^3\)
=> x=3
b) \(7.7^x=343\)
=> \(7.7^x=7.7^2\)
=> \(7^x=7^2\)
=> x=2
c) \(7.7^{x+1}=7.7^2\)
=> \(7^{x+1}=7^2\)
=> x+1=2
=> x=1
d) \(2^x-15=17\)
=> \(2^x=17+15\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> x=5
e) \(x^{10}=1\)
=> \(x^{10}=1^{10}\)
=> x=1
g) \(x^{10}=x\)
=> x = 0 hoặc 1
+) Với x=0 => \(0^{10}=0\)( t/m )
+) Với x=1 => \(1^{10}=1\)( t/m )
a: =>51x-85-4x-24=0
=>47x-109=0
hay x=109/47
b: \(\Leftrightarrow x\inƯC\left(240;180\right)\)
\(\Leftrightarrow x\inƯ\left(60\right)\)
mà x<20
nên \(x\in\left\{1;2;3;4;5;6;10;12;15\right\}\)
c: \(\Leftrightarrow x\in BC\left(18;20\right)\)
\(\Leftrightarrow x\in B\left(180\right)\)
mà 500<x<1000
nên \(x\in\left\{540;720;900\right\}\)
a) x = 10
b) x = 80.
c) x = 25