K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

x3 – 5xy + 3x3 + xy – x2 + 1/2.xy – x2

= (x3 + 3x3) + (xy + 1/2.xy – 5xy) – (x2 + x2)

= 4x3 - 7/2 xy – 2x2

15 tháng 5 2017

a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz

= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz

= -3x2yz + 5xy2z - xyz

b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2

= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)

= 4x3-\(\dfrac{7}{2}\)xy-2x2

1.

a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)

\(\dfrac{1}{3}x^6y^5z\)

Deg=12

Mấy câu kia tương tự nha cố gắng lên!

6 tháng 5 2020

undefined

19 tháng 4 2017

Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.

Ta có: P = 1313 x2 y + xy2 – xy + 1212 xy2 – 5xy – 1313 x2y

P = 1313 x2 y – 1313 x2y + 1212 xy2 + xy2 – xy – 5xy = 3232 xy2 – 6xy

Thay x = 0,5 và y = 1 ta được

P = 3232 . 0,5 . 12 – 6. 0,5 . 1 = 3434 - 3 = −94−94.

Vậy P = −94−94 tại x = 0,5 và y = 1.



2 tháng 2 2018

BÀI 2:

a)   Tại   x = 2;   y = -3   thì

                \(2.2^2-3. \left(-3\right)\)\(=8+9\)\(=17\)

b)   Tại  x = 2;  y = -3   thì

              \(\frac{1}{9}.2^3.\left(-3\right)^2-4.2\)\(=8-8\)\(=0\)

16 tháng 6 2017

1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

= \(6xy^2+8xy+1\)

b, giá trị của biểu thức tại x = 1 và y = 2 là:

\(A=6.1.2^2+8.1.2+1=41\)

2) và 3) bạ vt khó hiểu wa

16 tháng 6 2017

2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay

3)

a/ Có: \(4x+9=0\)

\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)

vậy.............

b/ Có: \(-5x+6=0\)

\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)

Vậy....................

c/ có: \(x^2-4=0\)

\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..................

d/ Có: \(9-x^2=0\)

\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy.............

e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)

Vậy...............

p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)