Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình mặt chắn của mặt phẳng (ABC) là:
Từ giả thiết Kết hợp với a > 0, b > 0, c > 0 suy ra mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ là 1 2 ; 1 2 ; 1 2 . Chọn C.
Đáp án D
Phương pháp:
- Phương trình đoạn chắn của mặt phẳng đi qua 3 điểm
A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c khác 0): x a + y b + z c = 1
- Sử dụng bất đẳng thức:
Đẳng thức xảy ra khi và chỉ khi x a = y b = z c
Cách giải:
A(a;0;0), B(0;b;0), C(0;0;c). (a, b,c > 0)
Mặt phẳng (ABC) có phương trình: x a + y b + z c = 1
Khoảng cách từ O đến (ABC):
Ta có:
Dấu “=” xảy ra khi và chỉ khi:
=>
Đáp án A
Phương trình mặt phẳng A B C : x a + y b + z c = 1
Vì I ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 6 a b c 3 ⇔ a b c ≥ 162
Thể tích khối tứ diện OABC được tính là V = O A . O B . O C 6 = a b c 6 ≥ 162 6 = 27
Dấu “=” xảy ra khi 1 a = 2 b = 3 c = 1 3 ⇒ a = 3 b = 6 c = 9
Kiểm tra thấy phương án A không đúng
Đáp án B
Vậy d lớn nhất bằng 1 3 khi a = b = c = 1.