Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có y ' = 1 − ln x x 2 ⇒ y ' = 0 ⇔ x = e
Suy ra y 1 = 0 ; y e = 1 e ⇒ min 1 ; e y = 0
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)
Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)
Đặt t=|2x-4| ta được: t2=(2x-4)2
Suy ra: A=t2-4t+1986=t2-4t+4+1982
=(t-2)2+1982 \(\ge\)1982 (với mọi x)
Dấu "=" xảy ra khi: t=2
<=>|2x-4|=2
Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3
Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)
Vậy GTNN của A là 1982 tại x=3
Đáp án C
Ta có f x = 2 x + m − 1 x + 1 → f ' x = 3 − m x + 1 2 ; ∀ x ∈ 1 ; 2
TH1: Với m < 3 , suy ra f ' x > 0 ; ∀ ∈ 1 ; 2 ⇒ f 2 = 1 ⇔ 3 + m 3 = 1 ⇔ m = 0 (nhận)
TH2: Với m>3 suy ra f ' x < 0 ; ∀ ∈ 1 ; 2 ⇒ f 1 = 1 ⇔ 1 + m 2 = 1 ⇔ m = 1 (loại)
Vậy m = 0 là giá trị cần tìm
\(P=4a^2+4ab+4b^2-12a-12b+12=\left[\left(4a^2-12a+9\right)+2b\left(2a-3\right)+b^2\right]+3b^2-6b+12\\ =\left(2a+b-3\right)^2+3\left(b-1\right)^2+9\)
Đáp án đúng : D