K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

+) Xét tam giác EIA vuông tại I nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét hai tam giác ABH và ∆EAI có:

AB = AE ( vì ABDE là hình vuông)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Suy ra: ∆ABH = ∆ EAI ( cạnh huyền – góc nhọn)

⇒ AH = EI ( hai cạnh tương ứng)

+) Tương tự hai tam giác vuông ACH và GAJ bằng nhau.

⇒ AH = GJ.

Suy ra EI = AH = GJ.

+) Xét ΔEKI và ΔGKJ có:

EI = GJ ( chứng minh trên)

∠(IKE) = ∠(JKG) (đối đỉnh).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

do đó ΔEKI = ΔGKJ ( cgv – gn)

suy ra: KE = KG

Từ đó ta có K trung điểm của EG. Vậy AK là trung tuyến của tam giác AEG.

12 tháng 12 2017

Bài này vẽ hình hơi dài dòng mà em ko bt vẽ hình ở H24 HOC24

Thôi thì lời giải của em ở trang 98->99

Hình bs.36

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

7 tháng 4 2019

a) xét tg EAC và tg BAF

có: EA = BA (gt); ^EAC =^BAF ( ^EAB = ^ FAC = 90 độ, ^BAC chung); AC = AF(gt)

=> tg EAC = tg BAF(c-g-c)

=> EC = BF ( 2 cạnh t/ư)

b) Kẻ \(EG\perp AH⋮G;FK\perp AH⋮K\)

xét tg EGA vuông tại G và tg AHB vuông tại H

có: EA = AB (gt); ^EAG =^ABH ( cùng phụ với ^BAH)

=> tg EGA = tg AHB( ch-gn)

=> EG = AH ( 2 cạnh t/ư) (1)

chứng minh tương tự, có: tg AFK = tg CAH(ch-gn)

                                         => FK = AH (2 cạnh t/ư) (2)

Từ(1);(2) => EG = FK (=AH)

xét tg EGI vuông tại G và tg FKI vuông tại K

có: EG = FK (cmt); ^EIG = ^FIK (đ đ)

=> tg EGI = tg FKI ( cgv -gn)

=> EI = FI (2 canh t/ư)

=> I là trung điểm của EF

...

hình bn tự kẻ nha

7 tháng 4 2019

cảm ơn bn

28 tháng 2 2018

B A E M K C H

a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !

CMR : \(\Delta ABE=\Delta HBE\)

Xét \(\Delta ABE,\Delta HBE\) có :

\(BA=BH\left(gt\right)\)

\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )

\(BE:chung\)

=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)

b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)

Xét \(\Delta ABO,\Delta HBO\) có :

\(AB=BH\left(gt\right)\)

\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))

AO : Chung

=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)

Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)

=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)

=> \(BO\perp AH\)

Hay : \(BE\perp AH\)

c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)

Suy ra : \(EK=EC\) (2 cạnh tương ứng)

d) Xét \(\Delta ABC\) có :

BE là tia phân giác của \(\widehat{ABC}\) (1)

Xét \(\Delta KEM,\Delta CEM\) có :

\(EK=EC\left(cmt\right)\)

\(EM:chung\)

\(KM=CM\) (M là trung điểm của KC)

=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)

=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)

=> EM là tia phân giác của \(\widehat{KEC}\) (2)

Từ (1) và (2) => \(BE\equiv ME\)

=> B, E, M thẳng hàng

=> đpcm.

4 tháng 3 2018

góc BKE và góc BCE bằng nhau theo trường hợp gì vậy bạn

 

6 tháng 12 2018

Theo a) ΔEKI = ΔGKJ nên KI = KJ.

Mặt khác, theo giả thiết K là trung điểm của AL nên KA = KL.

Suy ra: KA – KI = KL – KJ hay IA= JL.

Ta có: ∆ACH= ∆ GAJ ( theo a) nên HC = AJ;

∆ABH = ∆ EAI nên BH = AI.

+) Suy ra:

AL = AJ + JL = AJ + AI = HC + HB = BC

a: Xét ΔMBK và ΔMAC có

MB=MA

\(\widehat{BMK}=\widehat{AMC}\)

MK=MC

DO đó: ΔMBK=ΔMAC

b: Xét tứ giác ACBK có 

M là trung điểm của CK

M là trung diểm của AB

Do đó:ACBK là hình bình hành

Suy ra: AK//BC

29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)