K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Đáp án B

+Phương trình chính tắc của elip có dạng:

Nên a= 4; b= 2

+Vì MF1= MF2 nên M thuộc đường trung trực của F1F2 chính là trục Oy

+ M là điểm thuộc (E)  nên M  là giao điểm của elip và trục Oy

Vậy . M1(0 ; 2) và M2(0; -2).

NV
19 tháng 6 2020

\(a=2;b=1\Rightarrow c=\sqrt{3}\)

\(\Rightarrow F_1F_2=2c=2\sqrt{3}\)

\(MF_1\perp MF_2\Rightarrow\Delta MF_1F_2\) vuông tại M

\(\Rightarrow MF_1^2+MF_2^2=F_1F_2^2=12\) (Pitago)

Ta có: \(\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1+MF_2=2a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\\left(MF_1+MF_2\right)^2=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1^2+MF_2^2+2MF_1MF_2=16\end{matrix}\right.\)

\(\Rightarrow MF_1.MF_2=2\)

\(\Rightarrow S_{MF_1F_2}=\frac{1}{2}MF_1.MF_2=1\)

NV
25 tháng 4 2020

Bài 2:

Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)

a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?

Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\)\(\Delta_2\) với đường tròn?

b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?

NV
25 tháng 4 2020

Bài 1b/

\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt

Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)

\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\)\(\left(1;3\right)\)

TH1: d' có pt dạng \(3x-y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

TH2: d' có dạng \(x+3y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)

15 tháng 11 2018

a/ Ta có : △' = (-2)2-(m+3)

=4-m-3 = 1-m

De ptr co 2 nghiem x1 va x2 thì △' ≥0

=>1-m≥0 =>m≤1

Theo Viei{ x1+x2=4 ; x1x2=m+3

Ta co: |x1-x2|=2 ⇔(x1-x2)2=4

⇔(x1+x2)2-4x1x2=4

⇔42-4(m+3)=4

⇔m=0 (TM)

b/ Ta co: △ = (m-1)2-4(m+6)

=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0

=> m2-6m-23≥0 (*)

Theo viet { x1+x2=1-m ; x1x2=m+6

db <=> ( x1+x2)2-2x1x2=10

⇔ (1-m)2-2(m+6)=10

⇔ m2-4m -21 =0

⇔[m=7 ; m=-3

Thay vao (*) =>m=7 (loai) ; m=-3 (tm)

c/ Ta co :△' = (-m)2-(3m-2)

= m2-3m+2

De ptr co 2 nghiem x1 , x2 thi : △' ≥0

⇔m2-3m+2≥0 (*)

Theo viet { x1+x2=2m ; x1x2=3m-2

db <=> ( x1+x2)2-3x1x2=4

⇔ (2m)2-3(3m-2)=4

⇔ 4m2--9m+2 =0

⇔[m=2 ; m=\(\dfrac{1}{4}\)

Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)

d/ Ta co : △=(-3)2-4(m-2)

=17-4m

De ptr co 2 nghiem x1 , x2 thi : △ ≥0

⇔17-4m≥0

⇔m≤\(\dfrac{17}{4}\)

theo viet{ x1+x2=3 ; x1x2= m-2

⇔(x1+x2)3-3x1x2(x1+x2) =9

⇔33-3.3(m-2)=9

⇔m=4(tm)

NV
29 tháng 4 2020

a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)

Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:

\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)

Thay vào ta được:

\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)

\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)

Vậy \(0< m\le1\)

b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)

\(x_1^3+x_2^3\le16\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)

\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)

\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)

\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)

\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))

Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)

30 tháng 1 2020

\(\Delta=4m^2+4m+1\)

phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m\ne-\frac{1}{2}\)

theo hệ thức viete : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1.x_2=-m-1\end{matrix}\right.\)

ta có : x12+x22=2

<=> (x1+x2)2-2x1x2-2=0

<=> 4m2+2m+2-2=0

<=> 4m2+2m=0

\(\Leftrightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=0\end{matrix}\right.\)

kết hợp với \(m\ne-\frac{1}{2}\)

=> m=0

NV
19 tháng 11 2019

\(a=1>0\); \(-\frac{b}{2a}=m+\frac{1}{m}\ge2>1\)

\(\Rightarrow\) Hàm số đã cho nghịch biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_1=\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(-1\right)=3m+\frac{2}{m}+1\)

\(y_2=f\left(1\right)=-m-\frac{2}{m}+1\)

\(\Rightarrow y_1-y_2=4m+\frac{4}{m}=8\)

\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>-m=4

hay m=-4

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Leftrightarrow x^2-4x+2m-2=0\)

\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)

\(=16-8m+8=-8m+24\)

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

hay m<3

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)

=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)

\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)

\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)

\(\Leftrightarrow m^2-6m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)