K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 2 2020

Xét 2 khai triển:

\(\left(x+1\right)^{2018}=C_{2018}^0+C_{2018}^1x+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\)

\(\left(x-1\right)^{2018}=C_{2018}^0-C_{2018}^1x+C_{2018}^2x^2-...+C_{2018}^{2018}x^{2018}\)

Cộng vế với vế:

\(\left(x+1\right)^{2018}+\left(x-1\right)^{2018}=2\left(C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\right)\)

\(\Leftrightarrow C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}=\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}=\frac{\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}-2^{2017}}{x-1}=\lim\limits_{x\rightarrow1}\frac{1009\left(x+1\right)^{2017}+1009\left(x-1\right)^{2017}}{1}=1009.2^{2017}\)

13 tháng 2 2020

Bạn giải thích bước biến đổi cuối được không á

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
\(\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\frac{(x^2+x+1)^{2018}-3^{2018}+(x+2)^{2018}-3^{2018}}{(x-1)(x+2017)}\)

\(=\frac{(x^2+x-2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x-1)[(x+2)^{2017}+...+3^{2017}]}{(x-1)(x+2017)}\)

\(=\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)

Do đó:

\(\lim_{x\to 1}\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\lim_{x\to 1}\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)

\(=\frac{3\underbrace{(3^{2017}+3^{2017}+...+3^{2017})}_{2018}+\underbrace{3^{2017}+...+3^{2017}}_{2018}}{1+2017}\)

\(=\frac{3.2018.3^{2017}+2018.3^{2017}}{2018}=3^{2018}+3^{2017}=3^{2017}.4\)

NV
20 tháng 7 2020

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(1+x\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\)\(n=2017\) vào ta được:

\(2017.2^{2016}=C_{2017^1}+2C_{2017}^2+3C_{2017}^3+...+2017.C_{2017}^{2017}\)