K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Đặt f(x) = x5 – 3x4 + 5x – 2

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(0) = –2 < 0

            f(1) = 1 > 0

            f(2) = -8 < 0

            f(3) = 13 > 0

⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0

⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)

⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).

9 tháng 4 2017

Đặt f(x) = x5 – 3x4 + 5x – 2, ta có:

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒⎧⎪⎨⎪⎩f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3){f(−2)=(−2)5−3(−2)4+5(−2)−2<0f(0)=−2<0f(1)=1−3+5−2=1>0f(2)=25−3.24+5.2−2=−8<0f(2)=35−3.34+5.3−2=13<0⇒{f(0).f(1)<0(1)f(1).f(2)<0(2)f(2).f(3)<0(3)

_ Hàm số f(x) là hàm số đa thức liên tục trên R.

⇒ Hàm số f(x) liên tục trên các đoạn [0, 1], [1, 2], [2, 3] (4)

Từ (1), (2), (3) và (4) ⇒ phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất một nghiệm trên mỗi khoảng (0, 1), (1, 2), (2, 3).

Vậy phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất ba nghiệm trên khoảng (-2, 5) (đpcm)

26 tháng 5 2017

Đặt \(f\left(x\right)=x^5-3x^4+5x-2\).
\(f\left(-2\right)=\left(-2\right)^5-3.\left(-2\right)^4+5.\left(-2\right)-2=-56< 0\).
\(f\left(0\right)=-2< 0\).
\(f\left(1\right)=1^5-3.1^4+5.1-2=1>0\).
\(f\left(2\right)=2^5-3.2^4+5.2-2=-8< 0\).
\(f\left(3\right)=3^5-3.3^4+5.3-2=13>0\).
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right).f\left(1\right)< 0\\f\left(1\right).f\left(2\right)< 0\\f\left(2\right).f\left(3\right)< 0\end{matrix}\right.\).
Hàm số đã cho là hàm đa thức nên liên tục trên R.
Suy ra hàm số liên tục trên các đoạn: \(\left[0;1\right];\left[1;2\right];\left[2;3\right]\) nên phương trình \(x^5-3x^4+5x-2=0\) có ít nhất một nghiệm trên các khoảng \(\left(0;1\right);\left(1;2\right);\left(2;3\right)\).

Tham khảo:

undefined

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).

4 tháng 4 2017

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

12 tháng 9 2016

gợi ý: a)chia 2 vế cho căn 5

đặt \(\frac{1}{\sqrt{5}}=cosa\Rightarrow\frac{2}{\sqrt{5}}=sina\)

khi đó pt <=>sin(x-a)=\(\frac{3}{\sqrt{5}}>1\)

->vô nghiệm

12 tháng 9 2016

bn giải thích cho mk chỗ này được ko : \(\frac{1}{\sqrt{5}}=\cos a\Rightarrow\frac{2}{\sqrt{5}}=\sin a\)

NV
1 tháng 4 2020

a/ Đề không rõ ràng bạn

Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R

b/ Xét \(f\left(x\right)=x^3+3x^2-1\)

Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)

\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)

\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)

\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)

\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt

NV
1 tháng 4 2020

c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)

\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)

\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm

d/ \(f\left(x\right)=5sin3x+x-10\)

\(f\left(0\right)=-10\)

\(f\left(4\pi\right)=4\pi-10\)

\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm