K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

22 tháng 7 2018

không sao đâu ; mk cam đoan là đúng hoàn toàn

\(\overrightarrow{AB}+\overrightarrow{DC}=2\cdot\overrightarrow{IN}+2\cdot\overrightarrow{MI}=2\cdot\overrightarrow{MN}\)

b: Sửa đề: \(\overrightarrow{AD}+\overrightarrow{BC}=2\cdot\overrightarrow{IJ}\)

Tham khảo:

undefined

 

 

5 tháng 8 2019

tối thử

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

12 tháng 5 2017

A B C D I J

Áp dụng tính chất trung điểm ta có:
Do J là trung điểm của BD nên \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}\).
Theo quy tắc ba điểm: \(\overrightarrow{IB}=\overrightarrow{IA}+\overrightarrow{AB}\)
\(\overrightarrow{ID}=\overrightarrow{IC}+\overrightarrow{CD}\).
Vì vậy: \(2\overrightarrow{IJ}=\overrightarrow{IB}+\overrightarrow{ID}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{IC}+\overrightarrow{CD}\)
\(=\left(\overrightarrow{IA}+\overrightarrow{IC}\right)+\left(\overrightarrow{AB}+\overrightarrow{CD}\right)\)
\(=\overrightarrow{AB}+\overrightarrow{CD}\) (ĐPCM).

NV
14 tháng 10 2020

\(\overrightarrow{IJ}=\overrightarrow{AI}+\overrightarrow{AJ}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(\overrightarrow{IJ}=-\frac{1}{6}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AB}+3\overrightarrow{IJ}\)

\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\frac{1}{2}\overrightarrow{AB}+m.\overrightarrow{IJ}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{2}\left(\frac{1}{2}\overrightarrow{B}+3\overrightarrow{IJ}\right)\)

\(\overrightarrow{AD}=\frac{5}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{IJ}=\frac{5}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{IJ}\right)\)

Vậy để A;K;D thẳng hàng \(\Leftrightarrow m=\frac{3}{5}\)

NV
22 tháng 11 2019

Tất cả biểu thức đều là vecto, cái nào là độ dài thì nằm trong trị tuyệt đối:

\(\left|BD\right|=\sqrt{AB^2+AD^2}=a\sqrt{5}\)

\(\left|AC\right|=\sqrt{AB^2+BC^2}=a\sqrt{13}\)

a/ \(AB.BD=-BA.BD=-\left|AB\right|.\left|BD\right|.cos\widehat{ABD}\)

\(=-2a.a\sqrt{5}.\frac{2a}{a\sqrt{5}}=-4a^2\)

\(BC.BD=\left|BC\right|.\left|BD\right|.cos\widehat{DBC}=3a.a\sqrt{5}.\frac{a}{a\sqrt{5}}=3a^2\)

\(AC.BD=AC\left(BA+AD\right)=AC.BA+AC.AD\)

\(=AC.AD-AC.AB=\left|AC\right|.\left|AD\right|.cos\widehat{DAC}-\left|AB\right|.\left|AC\right|.cos\widehat{BAC}\)

\(=a.a\sqrt{13}.\frac{3a}{a\sqrt{13}}-2a.a\sqrt{13}.\frac{2a}{a\sqrt{13}}=-a^2\)

\(AC.IJ=\frac{1}{2}AC\left(AD+BC\right)=\frac{1}{2}AC.AD+\frac{1}{2}AC.BC\)

Ta có \(AC.AD=3a^2\) (ngay bên trên)

\(AC.BC=CA.CB=\left|CA\right|.\left|CB\right|.cos\widehat{BCA}=a\sqrt{13}.3a.\frac{3a}{a\sqrt{13}}=9a^2\)

\(\Rightarrow AC.IJ=6a^2\)

22 tháng 11 2019

thanks bn nhìu :>