K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)

Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)

∠(ACB) +∠(ACE) =180o(hai góc kề bù)

Suy ra: ∠(ABD) =∠(ACE)

Xét ΔABD và ΔACE, ta có:

AB = AC (gt)

∠(ABD) =∠(ACE) (chứng minh trên)

BD=CE (gt)

Suy ra: ΔABD= ΔACE (c.g.c)

⇒∠D =∠E (hai góc tương ứng)

Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:

∠(BHD) =∠(CKE) = 90º

BD=CE (gt)

∠D =∠E (chứng minh trên)

Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

19 tháng 5 2017

A B C D E H K

a) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}\)

\(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABC\)\(\Delta ACE\) có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

DB = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)

Xét \(\Delta DBH\)\(\Delta ECK\) có:

\(\widehat{DHB}=\widehat{CKE}\) ( = 900)

DB = CE (gt)

\(\widehat{D}=\widehat{E}\)(cmt)

Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)

=> BH = CK (hai cạnh tương ứng)

b) Xét \(\Delta ABH\)\(\Delta ACK\) có:

CK = BH ( cmt )

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

AB = AC (gt)

Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)

6 tháng 2 2018

a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)

Ta có: góc ABC + góc ABD=180o (hai góc kề bù)

góc ACB + góc ACE=180o (hai góc kề bù)

Suy ra: góc ABD = góc ACE

Xét ∆ABD và ∆ACE, ta có:

AB = AC (gt)

góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

⇒ góc D = góc E (hai góc tương ứng)

Xét hai tam giác vuông BHD và CKE, ta có:

góc BHD =góc CKE=90o

BD = CE (gt)

góc D = gócE (chứng minh trên)

Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

Xét tam giác vuông AHB và ACK, ta có:

góc AHB = gócAKC = 90o

AB = AC (gt)

BH = CK (chứng minh trên)

Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)



18 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔABH và ΔACK, ta có:

AB = AC (gt)

∠(AHB) =∠(AKC) =90o

BH=CK ( chứng minh trên)

Suy ra: ΔABH= ΔACK (cạnh huyền– cạnh góc vuông)

19 tháng 5 2017

A B C D K E H

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)

\(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét hai tam giác ABD và ACE có:

\(\widehat{BAD}=\widehat{CAE}\) (gt)

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)

Suy ra: BD = CE (hai cạnh tương ứng)

b) Xét hai tam giác BHD và CKE có:

BD = CE (cmt)

\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))

Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó; ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

b: Ta có: ΔABH=ΔACK

nên \(\widehat{ABH}=\widehat{ACK}\)

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

5 tháng 2 2022

cảm ơn nha

 

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

 

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K cso

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔBHD=ΔCKE

Suy ra: BH=CK

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
BH=CK

Do đó: ΔABH=ΔACK

14 tháng 7 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)

Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)

∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)

Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE

+) Xét ΔABD và ΔACE có:

∠DAB = ∠EAC ( giả thiết)

AB = AC (vì tam giác ABC cân tại A)

∠ABD = ∠ACE ( chứng minh trên )

⇒ ΔABD = ΔACE (g.c.g)

⇒ BD = CE ( hai cạnh tương ứng)..