K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

Ta có: BF là tia phân giác góc trong tại đỉnh B

      BE là tia phân giác góc ngoài tại đỉnh B

Suy ra: BF ⊥ BE (tính chất hai góc kề bù)

Vậy BF ⊥ ED.

Lại có: CD là đường phân giác góc ngoài tại C

      CE là đường phân giác góc trong tại C

Suy ra: CD ⊥ CE (tính chất hai góc kề bù)

Vậy CD ⊥ EF.

Vậy các đường thẳng EA; FB; DC là các đường cao trong tam giác DEF.

29 tháng 7 2017

a) E thuộc tia phân giác của ˆCBHCBH^

EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của ˆBCKBCK^

EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

E thuộc tia phân giác của ˆBACBAC^ mà E # A

Vậy AE là tia phân giác của ˆBACBAC^

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

AEAFAE⊥AF (tính chất hai góc kề bù)

Hay AEDFAE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ˆABCABC^

CD là tia phân giác của ˆACBACB^

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

BFBE⇒BF⊥BE (tính chất hai góc kề bù)

Hay BFEDBF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

CDCE⇒CD⊥CE (tính chất hai góc kề bù)

Hay CDEF

24 tháng 2 2018

a) E thuộc tia phân giác của ˆCBHCBHˆ

⇒⇒ EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của ˆBCKBCKˆ

⇒⇒ EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

⇒⇒ E thuộc tia phân giác của ˆBACBACˆ mà E # A

Vậy AE là tia phân giác của ˆBACBACˆ

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

⇒⇒ AE⊥AFAE⊥AF (tính chất hai góc kề bù)

Hay AE⊥DFAE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ˆABCABCˆ

CD là tia phân giác của ˆACBACBˆ

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

⇒BF⊥BE⇒BF⊥BE (tính chất hai góc kề bù)

Hay BF⊥EDBF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

⇒CD⊥CE⇒CD⊥CE (tính chất hai góc kề bù)

Hay CD⊥EF

16 tháng 7 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc ngoài tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

24 tháng 5 2019

a. Ta có: E thuộc tia phân giác của ∠(CBH)

Suy ra: EG = EH (tính chất tia phân giác) (1)

      E thuộc tia phân giác của ∠(BCK)

Suy ra: EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

b. Ta có: EH = EK (chứng minh trên)

Suy ra: E thuộc tia phân giác của ∠(BAC).

Mà E khác A nên AE là tia phân giác của ∠(BAC)

c. Ta có: AE là tia phân giác góc trong tại đỉnh A

      AF là tia phân giác góc trong tại đỉnh A

Suy ra: AE ⊥ AF (tính chất hai góc kề bù)

Vậy AE ⊥ DF.

d. Tương tự câu a, ta có:

      BF là tia phân giác của ∠(ABC)

      CD là tia phân giác của ∠(ACB)

Vậy AE, BF, CD là các đường phân giác của tam giác ABC.

e. Ta có: BF là tia phân giác góc trong tại đỉnh B

      BE là tia phân giác góc trong tại đỉnh B

Suy ra: BF ⊥ BE (tính chất hai góc kề bù)

Vậy BF ⊥ ED.

Lại có: CD là đường phân giác góc trong tại C

      CE là đường phân giác góc trong tại C

Suy ra: CD ⊥ CE (tính chất hai góc kề bù)

Vậy CD ⊥ EF.

25 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

EB là tia phân giác của ABC

=> EH = EG (1)

EC là tia phân giác của ACB

=> EK = EG (2)

Từ (1) và (2)

=> EH = EG = EK

b.

EB là tia phân giác của ABC

EC là tia phân giác của ACB

=> E là giao điểm của ba đường phân giác của tam giác ABC

=> AE là tia phân giác của BAC

c.

Gọi Ax là tia đối của tia AC

xAB + BAC = 1800

xAB = 1800 - BAC

AF là tia phân giác của xAB

=> xAF = FAB = \(\frac{xAB}{2}=\frac{180^0-BAC}{2}=90^0-\frac{BAC}{2}\)

AE là tia phân giác của BAC

=> BAE = EAC = BAC/2

FAE = FAB + BAE

       \(=90^0-\frac{BAC}{2}+\frac{BAC}{2}\)

        = 900

=> AE _I_ DF

Chúc bạn học tốtok

18 tháng 5 2018