Cho khối chóp S.ABC có  M ∈...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Đáp án là B

12 tháng 8 2017

18 tháng 11 2019

2 tháng 6 2019

Đáp án là D

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

13 tháng 2 2017

Chọn D.

Phương pháp:

+) Sử dụng công thức tỉ lệ thể tích:

Cho khối chóp S.ABC, các điểm A 1 ,   B 1 ,   C 1  lần lượt thuộc SA, SB, SC

+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.

Cách giải:

I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)

Trong (SAB), gọi N là giao điểm của IK và AB

Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.

Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và

*) Gọi L là trung điểm của SD

Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL

18 tháng 3 2017

Chọn đáp án C

Gọi O là giao điểm của ACBD

Ta có

⇒ Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MND) là tứ giác DEFN.

Suy ra V 1 = V S . A D E F N và   V 2 = V B C D E F N

Từ giả thiết ta có ∆ A B D đều cạnh a

 

Thể tích khối chóp N.MCD là

V N . M C D = 1 3 d N ; M C D . S ∆ M C D = a 3 4  

Ta có F là trọng tâm của ∆ S M C nên M F M N = 2 3 ; E là trung điểm của MD nên M E M D = 1 2  

Áp dụng công thức tính thể tích ta có:

Thể tích khối chóp S.ABCD

V S . A B C D = 1 3 . S A . S A B C D = a 3 4  

Suy ra V 1 = V S . A D E F N = V S . A B C D - V 2 = a 3 24  

Vậy  V 1 V 2 = 1 5