Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa
3.
\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)
\(\Rightarrow y_{min}=y\left(1\right)=m-4\)
\(\Rightarrow m-4=0\Rightarrow m=4\)
4.
Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định
\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)
\(\Rightarrow m=\frac{41}{5}\)
Đáp án B
1.
\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến
\(m=y_{min}=y\left(0\right)=2\)
\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)
\(\Rightarrow M^2+m^2=\frac{41}{4}\)
2.
Hàm xác định trên \(\left[-2;2\right]\)
\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)
\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)
\(\Rightarrow N=-2;M=2\sqrt{2}\)
\(\Rightarrow M+2N=2\sqrt{2}-4\)
Lời giải:
\(y=\frac{mx-m+2}{x+m}\Rightarrow y'=\frac{m(x+m)-(mx-m+2)}{(x+m)^2}\)
\(\Leftrightarrow y'=\frac{m^2+m-2}{(x+m)^2}\)
Để hàm số nghịch biến trên từng khoảng xác định của nó thì:
\(y'\leq 0\Leftrightarrow m^2+m-2\leq 0\)
\(\Leftrightarrow -2\leq m\leq 1\)
Đáp án C
5.
\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)
\(\Rightarrow M=-2\)
Lời giải:
Ta có: \(y=\frac{x^2-m^2+2m+1}{x-m}=x+m+\frac{2m+1}{x-m}\)
\(\Rightarrow y'=1-\frac{2m+1}{(x-m)^2}\)
Để hàm số đồng biến trên khoảng xác định của nó thì \(y\geq 0, \forall x\in \text{MXĐ}\)
\(\Leftrightarrow 1-\frac{2m+1}{(x-m)^2}\geq 0\)
\(\Leftrightarrow (x-m)^2-(2m+1)\geq 0\)
\(\Leftrightarrow x^2-2mx+(m^2-2m-1)\geq 0\)
Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi:
\(\Delta'=m^2-(m^2-2m-1)\leq 0\)
\(\Leftrightarrow m\leq \frac{-1}{2}\)
Đáp án D
tìm 2 điểm A và B . tam giác vuông tại 0 => vecto OA*OB= 0 với O là gốc
a đù xem lần đầu sao k có pt h lại có . bài này mk tìm dc denta'=1=> nghiệm x1=m+1:x2=m-1( theo công thức nghiệm)=>A(m+1:0),B(m-1;0) => vì tam giác OAB vuông mà O là gốc nên => tích OA.OB=0 <=>(m+1)*(m-1)+0*0=0 => m^2-1=0 => m=+-1
Lời giải:
Ta có: \(y=x^4-2(m+1)x^2+2m+1\)
\(\Leftrightarrow y=(x^4-1)-2(m+1)x^2+2(m+1)\)
\(y=(x^2-1)(x^2-2m-1)\)
Xét PT \(y=0\) ta thấy pt đã có nghiệm \(x=\pm 1\). Do đó để đths cắt trục hoành tại 4 điểm phân biệt thì pt \(x^2-2m-1=0\) phải có thêm 2 nghiệm khác $\pm 1$ nữa
Do đó: \(\left\{\begin{matrix} 2m+1>0\\ (\pm 1)^2-2m-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{-1}{2}\\ m\neq 0\end{matrix}\right.\)
Ta xét 2 TH sau:
TH1: \(2m+1>1\Rightarrow \sqrt{2m+1}>1;-\sqrt{2m+1}< -1\)
Hoành độ 4 điểm A,B,C,D theo thứ tự lần lượt là:
\(-\sqrt{2m+1};-1;1;\sqrt{2m+1}\)
Ta có: \(AB=BC\Leftrightarrow |-\sqrt{2m+1}+1|=|-1-1|=2\)
Từ đây dễ dàng tìm được \(m=4\) (thỏa mãn)
TH2: \(0\leq 2m+1< 1\Rightarrow \sqrt{2m+1}< 1;-\sqrt{2m+1}> -1\)
Hoành độ 4 điểm A,B,C,D theo thứ tự lần lượt là:
\(-1;-\sqrt{2m+1};\sqrt{2m+1};1\)
Ta có \(AB=BC\Leftrightarrow |-1+\sqrt{2m+1}=|-\sqrt{2m+1}-\sqrt{2m+1}|=2\sqrt{2m+1}\)
Từ đây ta dễ dàng tìm được \(m=\frac{-4}{9}\) (thỏa mãn)
Chọn D
Hàm số có 2 điểm cực trị x1; x2 ⇔ Δ' > 0 ⇔ 4 - (m + 2) > 0 ⇔ m < 2
Chia y cho y’ ta được :
Suy ra : Phương trình đường thẳng đi qua hai điểm cực trị là: y = (m - 2)(2x + 1).
Điểm cực trị tương ứng : A(x1;(m - 2)(2x1 + 1)) và B(x2;(m - 2)(2x2 + 1))
Có: