K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi P là trung điểm của AC, Q là trung điểm của BC, I là giao điểm của MN với DC

Vì CMDN là hình chữ nhật nên IC = IM = ID = IN

Tam giác CNI cân tại I nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (3)

Tam giác CNQ cân tại Q nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (4)

Vì AB ⊥ CD nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90 °    (5)

Từ (3), (4) và (5) suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °  hay MN ⊥ QN

Vậy MN là tiếp tuyến của đường tròn đường kính BC

Tam giác CMI cân tại I nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (6)

Tam giác CMP cân tại P nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9     (7)

Vì AB ⊥ CD nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °     (8)

Từ (6), (7) và (8) suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °  hay MN ⊥ PM

Vậy MN là tiếp tuyến của đường tròn đường kính AC

2 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ACD vuông tại C có CM ⊥ AD

Theo hệ thức lượng trong tam giác vuông, ta có:

C D 2  = DM.DA    (1)

Tam giác BCD vuông tại C có CN ⊥ BD

Theo hệ thức lượng trong tam giác vuông, ta có:

C D 2  = DN.DB    (2)

Từ (1) và (2) suy ra: DM.DA = DN.DB

20 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABD nội tiếp trong đường tròn có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90o hay Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tam giác ACM nội tiếp trong đường tròn có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90 °

Suy ra: CM ⊥ AD ⇒ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tam giác BCN nội tiếp trong đường tròn có AC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Suy ra: CN ⊥ BD ⇒ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 =  90 °

Tứ giác CMDN có ba góc vuông nên nó là hình chữ nhật

20 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O là trung điểm của AB

Tứ giác CMDN là hình chữ nhật nên CD = MN

Trong tam giác OCD ta có: CD ≤ OD nên MN  ≤  OD

Vì OD không đổi nên MN = OD là giá trị lớn nhất khi và chỉ khi C trùng với O

Vậy C là trung điểm của AB thì MN có độ dài lớn nhất.

23 tháng 6 2017

Đường tròn

Đường tròn

a: góc AMC=1/2*180=90 độ

=>góc DMC=90 độ

góc CNB=1/2*180=90 độ

=>góc DNC=90 độ

Kẻ tiếp tuyến Cx của hai đường tròn đường kính AC,CB, Cx cắt MN tại I

Xét (E) có

IC,IM là tiếp tuyến

=>IC=IM

Xét (F) có

IN,IC là tiếp tuyến

=>IN=IC=IM

Xét ΔMCN có

CI là trung tuyến

CI=MN/2

=>ΔMCN vuông tại C

góc DMC=góc DNC=góc MCN=90 độ

=>DMCN là hcn

b: ΔDCA vuông tại C có CM vừa là đường cao

nên DM*DA=DC^2

ΔDCB vuông tại C có CN là đường cao

nên DN*DB=DC^2=DM*DA

16 tháng 11 2021

k biết thì hỏi. Vấn đề gì à

3 tháng 10 2021

bạn god rick giải dài nhưng chưa chắc là đúng

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)