K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

5 x - 3 = x 2 - 3 x + 12 (1)

5 x   –   3   =   ( x   +   1 ) ( x   –   3 ) (2)

x 2 – 3 x + 12 = ( x + 1 ) ( x – 3 ) (3)

x -5 -4 -3 -2 -1 0 1 2 3 4 5
5x – 3 -28 -23 -18 -13 -8 -3 2 7 12 17 22
x 2 – 3 x + 12 52 40 30 22 16 12 10 10 12 16 22
(x + 1)(x – 3) 32 21 12 5 0 -3 -4 -3 0 5 12
7 tháng 5 2019

a, Vì \(2+\frac{3-2x}{5}\)không nhỏ hơn \(\frac{x+3}{4}-x\)

\(\Rightarrow2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

Giải phương trình : 

\(2+\frac{3-2x}{5}\ge\frac{x+3}{4}-x\)

\(\Rightarrow\frac{40}{20}+\frac{4\left(3-2x\right)}{20}\ge\frac{5\left(x-3\right)}{20}-\frac{20x}{20}\)

\(\Rightarrow40+12-8x\ge5x-15-20x\)

\(\Rightarrow7x=67\)

\(\Rightarrow x\ge\frac{67}{7}\)

7 tháng 5 2019

b, \(\frac{2x+1}{6}-\frac{x-2}{9}>-3\)

\(\Rightarrow\frac{3\left(2x+1\right)}{18}-\frac{2\left(x-2\right)}{18}>\frac{-54}{18}\)

\(\Rightarrow6x+3-2x+4>-54\)

\(\Rightarrow4x>-61\)

\(\Rightarrow x>\frac{-61}{4}\)\(\left(1\right)\)

Và : \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)

\(\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\ge\frac{36}{12}-\frac{x-3}{12}\)

\(\Rightarrow12x-3x+9\ge36-x+3\)

\(\Rightarrow10x\ge30\)

\(\Rightarrow x\ge3\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}x>\frac{-61}{4}\\x\ge3\end{cases}\Rightarrow x>3}\)

Vậy với giá trị x > 3 thì x là nghiệm chung của cả 2 bất phương trình

1 tháng 5 2017

a) Ta có :

\(5x-3=x^2-3x+12\left(1\right)\)

\(x^2-3x+12=\left(x+1\right)\left(x-3\right)\left(2\right)\)

\(\left(x+1\right)\left(x-3\right)=5x-3\left(3\right)\)

b) Lập bảng :

x -5 -4 -3 -2 -1 0 1 2 3 4 5
5x - 3 -28 -23 -18 -13 -8 -3 2 7 12 17 22
\(x^2-3x+12\) 52 40 30 22 16 12 10 10 12 16 22
(x+1)(x-3) 32 21 12 5 0 -3 -4 -3 0 5 12

Từ bảng trên , ta có :

- Phương trình (1) có có tập nghiệm là \(S=\left\{3;5\right\}\)

- Phương trình (2) vô nghiệm \(S=\varnothing\)

- Phương trình (3) có tập nghiệm là \(S=\left\{0\right\}\)

22 tháng 4 2019

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+64+36\)

\(=\left(n^4+20n^2+100\right)-36n^2\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)

Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)

Mà do \(n\in N\Rightarrow n^2+10-6n=1\)

\(\Leftrightarrow n^2-6n+9=0\)

\(\Leftrightarrow\left(n-3\right)^2=0\)

\(\Leftrightarrow n-3=0\)

\(\Leftrightarrow n=3\)

Vậy n=3.

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

1 tháng 5 2017

a) Thử trực tiếp hoặc chịu khó phân tích thành nhân tử

từ đó ta kết luận 2 là nghiệm của 2 PT

b) Ta thay x=3 vào 2 PT

Thay x=3 là nghiệm của PT 1

x= 3 không là nghiệm của PT 2

c) hai phương trình không tương đương nhau vì x=3 không là nghiệm của PT 2

1 tháng 5 2017

a) Thay x=2 vào phương trình x2 -5x +6

ta được 22-5.2+6=0

Thay x=2 vào phương trình x+(x-2)(2x+1)

ta được 2+(2-2)(2.2+1)=2

Vậy x=2 là nghiệm của cả hai phương trình