Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Cách 1.
b) Do ( hai góc nội tiếp chắn hai cung bằng nhau).
Suy ra: BC là tia phân giác của góc .
Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.
Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)
Điểm C nằm trên đường trung trực của HD nên CH=CD.
* Cách 1.
Ta có: AD vuông BC tại A' nên A A ' B ^ = 90 o
Vì A A ' B ^ là góc có đỉnh bên trong đường tròn nên:
Tương tự, vì BE vuông góc AC tại B' nên ta có:
E B ' C ^ là góc có đỉnh nằm trong đường tròn
Ta có:(1)
Và (2)
Tà (1) và (2)
Đây là hai góc nội tiếp chắc hai cung DC và CE nên:
Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.
A B C E F D 1 2 1 2 2 1
Theo giả thuyết suy ra các cung bằng nhau :
\(\widebat{AD}=\widebat{AF}=\widebat{DB}=\widebat{FC}\)
Do đó \(\widehat{A_1}=\widehat{B_1}\)mà 2 góc ở vị trí sole trong \(\Rightarrow AD//EF\) \(\left(1\right)\)
\(\widehat{A_2}=\widehat{C}_1\) mà 2 góc ở vị trí sole trong \(\Rightarrow AF//CD\) \(\left(2\right)\)
và \(AD=EF\) \(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)ADEF là hình thoi
Do ( hai góc nội tiếp chắn hai cung bằng nhau).
Suy ra: BC là tia phân giác của góc .
Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.