K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Do Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( hai góc nội tiếp chắn hai cung bằng nhau).

Suy ra: BC là tia phân giác của góc Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 .

Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.

1 tháng 12 2017

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) * Cách 1.

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Do Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( hai góc nội tiếp chắn hai cung bằng nhau).

Suy ra: BC là tia phân giác của góc Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 .

Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

17 tháng 4 2017

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

26 tháng 9 2018

Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)

Điểm C nằm trên đường trung trực của HD nên CH=CD.

17 tháng 5 2019

Giải bài 95 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

 * Cách 1.

Ta có: AD vuông BC tại A' nên  A A ' B ^ = 90 o

Vì  A A ' B ^ là góc có đỉnh bên trong đường tròn nên:

Tương tự, vì BE vuông góc AC tại B' nên ta có:

E B ' C ^ là góc có đỉnh nằm trong đường tròn

Ta có:(1)

Và (2)

Tà (1) và (2) 

Đây là hai góc nội tiếp chắc hai cung DC và CE nên:

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.

22 tháng 3 2021

A B C E F D 1 2 1 2 2 1

Theo giả thuyết suy ra các cung bằng nhau :

\(\widebat{AD}=\widebat{AF}=\widebat{DB}=\widebat{FC}\)

Do đó \(\widehat{A_1}=\widehat{B_1}\)mà 2 góc ở vị trí sole trong \(\Rightarrow AD//EF\)   \(\left(1\right)\)

\(\widehat{A_2}=\widehat{C}_1\) mà 2 góc ở vị trí sole trong \(\Rightarrow AF//CD\)   \(\left(2\right)\)

và \(AD=EF\)  \(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)ADEF là hình thoi