K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 3:

Áp dụng các hằng đẳng thức đáng nhớ ta có:

$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$

$=[(a+b)^2-2ab]^2-2(ab)^2$

$=(8^2-2.15)^2-2.15^2=706$

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 2:

a)

$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$

$=-2-(x-3)^2$

Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$

Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)

$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$

$\leq 5-0=5$

Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$

a: \(A=\left(x-1\right)^2+2008\ge2008\)

Dấu '=' xảy ra khi x=1

d: \(D=\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x=-4

1 tháng 4 2017

(2x + 2-x)2 = 4x + 4-x + 2 = 23 + 2 = 25

⇒ 2x + 2-x = 5

NV
8 tháng 8 2020

\(y=\left(x^2+x+m\right)^2=\left[\left(x+\frac{1}{2}\right)^2+m-\frac{1}{4}\right]^2\)

Đặt \(x+\frac{1}{2}=t\Rightarrow-\frac{3}{2}\le t\le\frac{5}{2}\)\(\frac{1}{4}-m=n\)

\(\Rightarrow y=f\left(t\right)=\left(t^2-n\right)^2=t^4-2nt^2+n^2\)

Hàm trùng phương nên đồ thị đối xứng qua \(t=0\)

\(f'\left(t\right)=4t\left(t^2-n\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t^2=n\end{matrix}\right.\)

- Nếu \(n\le0\Rightarrow f'\left(t\right)=0\) có nghiệm duy nhất \(t=0\)

\(\Rightarrow f\left(t\right)_{min}=f\left(0\right)=n^2=4\Rightarrow n=-2\Rightarrow m=\frac{9}{4}\)

- Nếu \(n>0\) ta chỉ cần quan tâm 2 nghiệm \(\left[{}\begin{matrix}t=\sqrt{n}\\t=-\sqrt{n}\end{matrix}\right.\) do \(t=0\) là cực đại nên min ko thể xảy ra tại đây

+TH1: \(n>\frac{25}{4}\Rightarrow f\left(t\right)_{min}=f\left(\frac{5}{2}\right)=\left(n-\frac{25}{4}\right)^2=4\)

\(\Rightarrow n=\frac{33}{4}\Rightarrow m=-8\)

+ TH2: \(0\le n\le\frac{25}{4}\Rightarrow f\left(t\right)_{min}=0\ne4\) (ktm)

Vậy \(\left[{}\begin{matrix}m=\frac{9}{4}\\m=-8\end{matrix}\right.\) \(\Rightarrow B\)

8 tháng 8 2020

Cho mình hỏi là sao mình tìm khoảng giá trị của x2+x xong rồi tìm giá trị min trên đoạn [-2;2] thì sẽ ra

(m-\(\frac{1}{4}\))2=4 thì lại không được nhỉ ??

NV
19 tháng 4 2019

ĐKXĐ: \(-2\le x\le2\)

Với \(-2\le x\le\frac{2}{3}\Rightarrow6x-4\le0\Rightarrow VT\ge VP\) BPT luôn đúng

- Với \(\frac{2}{3}\le x\le3\) ta có:

\(VT^2=\left(\sqrt{2x+4}+2\sqrt{2-x}\right)^2=12-2x+4\sqrt{2\left(4-x^2\right)}\ge8\)

\(\Rightarrow VT\ge2\sqrt{2}\)

\(VP=\frac{6x-4}{5\sqrt{x^2+1}}< \frac{6x-4}{5}\le\frac{12-4}{5}=\frac{8}{5}< 2\sqrt{2}\)

\(\Rightarrow VT>VP\)

Vậy BPT luôn đúng với mọi \(x\in\left[-2;2\right]\Rightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\) \(\Rightarrow P=-10\)

24 tháng 5 2019

Cm VT2 ≥ 8 như nào vậy bạn, mình không hiểu lắm

5 tháng 5 2016

Đặt \(a=\sqrt[3]{\frac{23+\sqrt{513}}{4}};b=\sqrt[3]{\frac{23-\sqrt{513}}{4}}\Rightarrow a^3+b^3=\frac{23}{2}\)

\(ab=1\) và \(3x+1=a+b\)

Suy ra : \(\left(3x+1\right)^3-27x^3+27x^2+9+1=27\left(x^3+x^2+1\right)+3\left(3x+1\right)-29\)

hay : \(A=\frac{\left(3x+1\right)^3-3\left(3x+1\right)+29}{27}=\frac{\left(a+b\right)^3-3\left(a+b\right)+29}{27}\)

                                             \(=\frac{a^3+b^3+3ab\left(a+b\right)-3\left(a+b\right)+29}{27}=\frac{\frac{23}{2}+29}{27}=\frac{3}{2}\)

Vậy giá trị của biểu thức đã cho là \(A=\frac{3}{2}\)

NV
1 tháng 8 2020

Đặt \(log_5\left(x+5\right)=a\Rightarrow x+5=5^a\)

\(\Rightarrow a^2-\left(m+6\right)log_25^a+m^2+9=0\)

\(\Leftrightarrow a^2-a\left(m+6\right)log_25+m^2+9=0\)

\(\Delta=\left(m+6\right)^2.log^2_25-4\left(m^2+9\right)\ge0\)

\(\Leftrightarrow\left(log^2_25-4\right)m^2+\left(12log_2^25\right).m+36\left(log_2^25-1\right)\ge0\)

Bấm máy BPT trên và lấy số nguyên gần nhất ta được \(m\ge-2\Rightarrow\)\(20+2+1=23\) giá trị nguyên của m

24 tháng 9 2020

Mọi người giải nhanh giúp mình mấy câu này với ạ

25 tháng 9 2020

Mọi người giúp mình giải mấy câu này với ạ