Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
1.
Pt hoành độ giao điểm: \(\frac{2x-3}{x+3}=x-1\)
\(\Leftrightarrow2x-3=x^2+2x-3\)
\(\Leftrightarrow x=0\Rightarrow y=-1\)
Vậy tung độ giao điểm là \(-1\)
2.
\(y'=4x^3+4x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=8\\y\left(1\right)=3\end{matrix}\right.\)
Pttt: \(y=8\left(x-1\right)+3=8x-5\)
3.
\(y'=3x^2-6x\)
Lấy y chia y' và lấy phần dư ta được pt đường thẳng là: \(y=-2x+1\)
1.
\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang
2.
\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng
3.
\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang
4.
\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng
ĐTHS có 2 tiệm cận
a.
Pt hoành độ giao điểm: \(m-x=\frac{x-1}{x+1}\)
\(\Leftrightarrow\left(m-x\right)\left(x+1\right)=x-1\)
\(\Leftrightarrow x^2-\left(m-2\right)x-m-1=0\left(1\right)\)
Đường thẳng cắt đồ thị khi và chỉ khi (1) có nghiệm
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+4\left(m+1\right)\ge0\)
\(\Leftrightarrow m^2+8\ge0\) (luôn đúng với mọi m)
Đáp án C đúng
b.
\(y'=3x^2-6mx\)
Hàm số có 2 cực trị \(\Leftrightarrow m\ne0\)
Tiến hành chia y cho y' là lấy phần dư ta được pt đường thẳng qua 2 cực trị có dạng: \(y=-2m^2x+3m^3\Leftrightarrow2m^2x+y-3m^3=0\)
Đường thẳng đã cho song song d khi và chỉ khi:
\(\left\{{}\begin{matrix}2m^2=2\\-3m^3\ne3\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Đáp án A đúng
lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai
nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo
\(y'=6x^2-6\left(m+1\right)x+6m\)
ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)
suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B
de-ta \(=9\left(m+1\right)^2-36m\)
y' có 2 \(n_o\)phân biệt khi m#1
hai hoành độ của hai điểm cực trị là :
\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)
\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )
khoảng cách giữa hai điểm AB =\(\sqrt{2}\)
ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)
lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy
Chọn C
Đường thẳng AB qua A(1; -1) và có vecto chỉ phương A B → - 2 ; 4 suy ra 1 vecto pháp tuyến là n → 2 ; 1
Phương trình đường thẳng AB là:
2(x - 1) + 1.(y + 1) = 0 hay 2x + y - 1 = 0