K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 8 2020

Đặt \(x=\frac{\sqrt{2}}{2}sint\Rightarrow dx=\frac{\sqrt{2}}{2}cost.dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=\frac{1}{2}\Rightarrow t=\frac{\pi}{4}\end{matrix}\right.\)

\(\int\limits^{\frac{1}{2}}_0f\left(\sqrt{1-2x^2}\right)dx=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cost\right).costdt=\frac{\sqrt{2}}{2}\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right)cosxdx=\frac{7}{6}\)

\(\Rightarrow J=\int\limits^{\frac{\pi}{4}}_0f\left(cosx\right).cosx.dx=\frac{7\sqrt{2}}{6}\)

Đặt \(\left\{{}\begin{matrix}u=f\left(cosx\right)\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.f'\left(cosx\right)dx\\v=sinx\end{matrix}\right.\)

\(\Rightarrow J=sinx.f\left(cosx\right)|^{\frac{\pi}{4}}_0+\int\limits^{\frac{\pi}{4}}_0f'\left(cosx\right)sin^2x.dx=\frac{\sqrt{2}}{2}+I\)

\(\Rightarrow I=\frac{7\sqrt{2}}{6}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}}{3}\)

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

NV
3 tháng 4 2019

Rất khó hiểu, hàm số này không thể liên tục trên R

Định nghĩa 1 hàm số liên tục tại \(x_0\) khi:

\(\lim\limits_{x\rightarrow x_0^+}f\left(x\right)=\lim\limits_{x\rightarrow x_0^-}f\left(x\right)=f\left(x_0\right)\)

Có nghĩa là hàm \(f\left(x\right)\) muốn liên tục thì trước hết phải là 1 đơn ánh: mỗi giá trị của \(x_0\) chỉ cho duy nhất một giá trị \(f\left(x_0\right)\)

Nhưng trong bài toán này, hàm \(f\) rõ ràng ko phải đơn ánh, một giá trị \(x_0\) sẽ cho tới 2 giá trị \(f\left(x_0\right)\) khác nhau

Ví dụ: cho \(x=0\) ta được \(f\left(1\right)=2\), nhưng \(x=-3\) thì \(f\left(1\right)=-1\ne3\)

9 tháng 4 2019

Nguyên văn đề đây ạ:Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

NV
5 tháng 10 2020

\(\Leftrightarrow3x+8-i=5+4i\)

\(\Leftrightarrow3x=-3+5i\)

\(\Leftrightarrow x=-1+\frac{5}{3}i\)

29 tháng 11 2019
https://i.imgur.com/Pe6vPSJ.jpg
NV
6 tháng 4 2019

Câu 1:

\(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) (1)

Đặt \(t=\frac{2}{3x}\Rightarrow x=\frac{2}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=5.\frac{2}{3t}\Leftrightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=\frac{10}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3x}\right)+3f\left(x\right)=\frac{10}{3x}\Leftrightarrow3f\left(\frac{2}{3x}\right)+\frac{9}{2}f\left(x\right)=\frac{5}{x}\) (2)

Trừ vế cho vế của (2) cho (1):

\(\frac{5}{2}f\left(x\right)=\frac{5}{x}-5x\Rightarrow f\left(x\right)=\frac{2}{x}-2x\)

\(\Rightarrow\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx=\int\limits^1_{\frac{2}{3}}\left(\frac{2}{x^2}-2\right)dx=\left(-\frac{2}{x}-2x\right)|^1_{\frac{2}{3}}=\frac{1}{3}\)

NV
6 tháng 4 2019

Câu 2:

\(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) (1)

Đặt \(2-x=t\Rightarrow x=2-t\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-\left(2-t\right)^2-12\left(2-t\right)+16\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-t^2+16t-12\)

\(\Rightarrow3f\left(2-x\right)-4f\left(x\right)=-x^2+16x-12\)

\(\Rightarrow4f\left(2-x\right)-\frac{16}{3}f\left(x\right)=-\frac{4}{3}x^2+\frac{64}{3}x-16\) (2)

Cộng (1) và (2):

\(-\frac{7}{3}f\left(x\right)=-\frac{14}{3}x^2+\frac{28}{3}x\)

\(\Rightarrow f\left(x\right)=2x^2-4x\)

\(\Rightarrow\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left(2x^2-4x\right)dx=-\frac{8}{3}\)