Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)
b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)
Theo de bai ta co;\(x_1-x_2=17\)
Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)
\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)
\(\Leftrightarrow16m^2+33=289\)
\(\Leftrightarrow m=4\)
2.
a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)
TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)
TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)
Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)
Ta co:\(x^2_1+x^2_2=x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)
\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)
\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)
\(\Rightarrow7m^2-11m-6=0\)
\(\Delta_m=121+168=289>0\)
\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\)
TH2;Tuong tu
Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)
Cho phương trình x2 - 2(m - 1)x + m - 3 = 0. a) Chứng minh rằng phương trình luôn có nghiệm với mọi m. b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của M = (x1)^2 + (x2)^2 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Tham khảo bài tương tự tại đó nhé bn !
Mk chưa hok lớp 9 nên ko biết , thông cảm
Có \(x^2-2\left(m-1\right)x-3=0\)
\(\Leftrightarrow x^2-2mx+2x-3=0\)
\(\Leftrightarrow x\left(x-2m+1\right)=3\)
\(\Rightarrow x,x-2m+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
x | 1 | 3 | -1 | -3 |
x-2m+1 | 3 | 1 | -3 | -1 |
m | 1/2 | 3/2 | 3/2 | 1/2 |
vậy pt luôn có 2 nghiệm phân biệt.
a. thay m=1 vào pt(1): \(x^2-2.2x+2-4=0\)
<=>\(x^2-4x-2=0\)
\(\Delta'=\left(-2\right)^2-1.\left(-2\right)=4+2=6>0\)
=>\(x_1=-\left(-2\right)+\sqrt{6}=2+\sqrt{6};x_2=2-\sqrt{6}\)
Vậy,,,
b, \(\Delta'=\left[-\left(m+1\right)\right]^2-1.\left(2m-4\right)=m^2+2m+1-2m+4=m^2+5\)
Để pt(1) có 2 nghiệm phân biệt x1,x2 <=>\(\Delta'>0\Leftrightarrow m^2+5>0\) (luôn đúng)
Theo hệ thức vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-4\end{cases}}\)
Theo bài ra ta co;\(\frac{1}{x_1}+\frac{1}{x_2}=2\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=2\Leftrightarrow\frac{2m+2}{2m-4}=2\)
\(\Leftrightarrow2m+2=4m-8\Leftrightarrow2m=10\Leftrightarrow m=5\)
a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m
\(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)
b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)
a)\(\Delta\)=(m+1)2 -4.1(2m-3) = m2 +2m +1 - 8m +12 =(m2 -6m+9) +4 =(m-3)2 +4 >0 với mọi m
pt luôn có 2 nghiệm pb với mọi m
b) x =3 là nghiệm
32 -(m+1).3 +2m -3 =0
=>-m +3 =0 => m =3
a, \(\left(9-x^2\right)2-x=0\Leftrightarrow18-2x^2-x=0\)
\(\Delta=\left(-2\right)^2-4.18.\left(-1\right)=4+72=76>0\)
Nên phuwong trình có 2 nghiệm phân biệt
Tự làm chị nhé !
b, \(4x^4-9=0\Leftrightarrow4x^4=9\Leftrightarrow x^4=\frac{9}{4}\Leftrightarrow x=\pm\frac{\sqrt{3}}{\sqrt{2}}\)
Đáp án C
Đặt x 2 = t ( t ≥ 0 ) ta được phương trình t 2 - 6 t - 7 = 0 (*)
Nhận thấy a - b + c = 1 + 6 - 7 = 0 nên phương trình (*) có hai nghiệm
t 1 = -1(L); t 2 = 7(N)
Với t = 7 ta có x 2 = 7 ⇔ x = ± 7
Vậy phương trình đã cho có hai nghiệm.