K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

a) \(x^{12}-3x^6+1\)

\(=\left(x^6\right)^2-2\cdot x^6\cdot1+1^2-x^6\)

\(=\left(x^6-1\right)^2-\left(x^3\right)^2\)

\(=\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)

5 tháng 11 2018

b) \(x^4+6x^3+7x^2-6x+1\)

\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x-1\right)^2\)

4 tháng 11 2016

a , 3x2 + 3y2 - 6xy - 12

= 3 ( x2 + y2 - 2xy - 4 )

= 3 ( x - y )2 - 22

= 3 ( x - y + 2 ) ( x - y - 2 )

 

 

1 tháng 10 2016

b)x3-7x+6=x3-x-6x+6=x(x2-1)-6(x-1)=x(x-1)(x+1)-6(x-1)

=(x-1)[x(x+1)-6]=(x-1)(x2+x-6)=(x-1)(x2+3x-2x-6)=(x-1)[x(x+3)-2(x+3)]=(x-1)(x-2)(x+3)

c)x3-x2-x-2

=x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 9 2018

\(x^3-7x+6\)

\(=x^3-x^2+x^2-x-6x+6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-6\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)

27 tháng 10 2018

       \(x^3+5x^2+3x-9\)

\(=x^3-x^2+6x^2-6x+9x-9\)

\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)

       \(x^{16}+x^8-2\)

\(=\left(x^{16}-1\right)+\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+1\right)+\left(x^8-1\right)\)

\(=\left(x^8-1\right)\left(x^8+2\right)\)

\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+2\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+2\right)\)

27 tháng 10 2018

\(c,x^3+5x^2+3x-9\)

\(=x^3+6x^2+9-x^2-6x-9\)

\(=x\left(x^2+6x^2+9\right)-\left(x^2+6x^2+9\right)\)

\(=x.\left(x+3\right)^2-\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(x-1\right)\)

\(d,x^{16}+x^8-2\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1+x^4\right)\left(x^4+1-x^4\right)\)

8 tháng 9 2017

a) x^3−3x^2−4x+12

=(x^3-3x^2)-(4x-12)

=x^2(x-3)-4(x-3)

=(x-3)(x^2-4)=(x-3)(x-2)(x+2)

b) x^4-5x^2+4=x^4-x^2-4x^2+4

=(x^4-x^2) - ( 4x^2-4)

=x^2(x^2-1) - 4(x^2-1)

=(x^2-1)(x^2-4)

=(x-1)(x+1)(x-2)(x+2)

c) (x+y+z)^3-x^3-y^3-z^3

=x^3+y^3+z^3+3x^2yz+3xy^2z+3xyz^2-x^3-y^3-z^3

=3x^2yz+3xy^2z+3xyz^2

3xyz(x+y+z)

26 tháng 7 2018

Dùng hằng đẳng thức là xong

a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

b,  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

1 tháng 11 2018

\(a,4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

8 tháng 10 2017

\(x^2+7x+12\)

cách 1: \(=x^2+4x+3x+12\)

\(=x\left(x+4\right)+3\left(x+4\right)\)

\(=\left(x+4\right)\left(x+3\right)\)

cách 2: \(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

cách 3: \(=\left(x^2+7x+12,25\right)-0.25\)

\(=\left(x+3.5\right)^2-0.5^2\)

\(=\left(x+3.5+0.5\right)\left(x+3.5-0.5\right)\)

\(=\left(x+4\right)\left(x+3\right)\)

lấy đâu ra 8 cách vậy trời!!!!!!!!!!!!!!!

17 tháng 11 2017

Cách 1: 

   \(x^2+7x+12\)

\(=\left(x^2+4x\right)+\left(3x+12\right)\)

\(=x\left(x+4\right)+3\left(x+4\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

7 tháng 10 2018

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)

\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)

Chúc bạn học tốt.

23 tháng 10 2019

      \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)


\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)

\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)

\(\Rightarrow\left(x^2+10x+20\right)^2\)