K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2019

Đáp án B

Phương pháp:

Tính bán kính hai khối cầu dựa vào các mối quan hệ đường tròn nội tiếp tam giác.

Tính thể tích hai khối cầu đã cho theo công thức V = 4 3 π . R 3 và suy ra kết luận.

Cách giải: Cắt món đồ chơi đó bằng mặt phẳng đứng đi qua trục hình nón.

Gọi P, H, K lần lượt là hình chiếu vuông góc của M, I, J trên AB.

Vì  B A C = 2 β = 60 ° , A M = 9 c m .

⇒ B M = M C = 3 3 A B = A C = 6 3 = B C ⇒ Δ A B C  đều.

Vì IM là bán kính mặt cầu nội tiếp tam giác đều ABC nên  I H = I M = A M 3 = 3

Gọi là tiếp tuyến chung của hai đường tròn. Vì Δ A B C đều nên dẫn đến Δ A B ' C '  đều.

Suy ra bán kính đường tròn nội tiếp:

J K = J G = A G 3 = A M 9 = 1

Vậy tổng thể tích là:

V 1 + V 2 = 4 3 π . I H 3 + 4 3 π . J K 3 = 112 π 3

Chú ý khi giải:

Cần chú ý vận dụng các mối quan hệ đường tròn nội, ngoại tiếp tam giác đều trong việc tính bán kính các khối cầu.

31 tháng 1 2019

Đáp án đúng : C

20 tháng 6 2017

Đáp án D

4 tháng 8 2019

Đáp án C

Gọi S, A, B, C lần lượt là tâm của các mặt cầu thứ tư và ba mặt cầu tiếp xúc đáy (như hình vẽ)

Khi đó S.ABC là khối tứ diện đều cạnh 2r.

Goi I là tâm của tam giác A B C ⇒ S i ⊥ A B C .

Tam giác ABC đều cạnh 2 r ⇒ A I = 2 r 3 .

Tam giác SAI vuông tại I, có S I = S A 2 − I A 2 = 4 r 2 − 2 r 3 2 = 2 6 3 r .

Ta thấy rằng Δ S M H ~ A   S I g . g suy ra

S M S A = S H A I ⇒ S M = S A . A H A N = 2 r . r 2 r 3 = r 3 .

Vậy chiều cao của khối nón là  h = S M + S I + I D = r 3 + 2 6 3 r + r = r 1 + 3 + 2 6 3 .

30 tháng 11 2017

Đáp án B

3 tháng 6 2018

Gọi tâm của hai đường tròn trong (N) là C và D. Ta có GS là tiếp tuyến chung của hai đường tròn tại K và J. Khi đó: D J ⊥ G S C K ⊥ G S

Kẻ D N / / G S ( N ∈ I S ) , khi đó DHKJ là hình chữ nhật nên HK=DJ=1 cm, do đó ta có CH=2 cm.

Ta có ∆ D H C  đồng dạng ∆ G J D nên  D J C H = G D C D

⇒ D G = D J . C D C H = 1 . 4 2 = 2 cm từ đó suy ra GF = 9 cm.

Ta có ∆ D H C  đồng dạng ∆ G F S ⇒ G S D C = G F D H

⇒ G S = D C . G F D H = D C . G F D C 2 - C H 2 = 6 3 cm

⇒ F S = G S 2 - G F 2 = 3 3  cm.

Vì ∆ G E L  đồng dạng ∆ G F S  nên E L F S = G E G F

⇒ E L = G E . F S G F = 1 . 3 3 9 = 3 3  

Vì (N) là khói nón cụt nên:

V N = 1 3 E L 2 + F S 2 + E L . F S E F = 728 π 9

Chọn đáp án D.

1 tháng 1 2018

Đáp án D

31 tháng 7 2019

HD: Giả sử thiết diện là hình thang ABPQ

Gọi I, K lần lượt là tâm của đường tròn nhỏ và to.

Gọi M, N là hình chiếu của I, K lên một cạnh bên, điểm

24 tháng 12 2019

Đáp án B

Gọi R,h lần lượt là bán kính đáy và chiều cao của khối trụ ⇒ h = 6 R = 6 .  Thể tích của khối trụ là V = πR 2 h = π . 1 2 . 6 = 6 π .  Khối cầu bên trong khối trụ có bán kính là R = 1 ⇒ V C = 4 3 π . R 3 = 4 3 π .  Khối nón bên trong khối trụ có bán kính đáy là R = 1 và chiều cao h - 2R = 4. Suy ra thể tích khối nón là V N = 1 3 πR 2 h = 1 3 . π . 1 2 . 4 = 4 3 π .  Do đó, thể tích lượng nước còn lại bên trong khối trụ là V 0 = V - V C + V N = 6 π - 2 . 4 π 3 = 10 π 3 .  Vậy tỉ số cần tính là T = V 0 V = 10 π 3 : 6 π = 5 9 .

16 tháng 7 2018

Đáp án A.

Kí hiệu như hình vẽ.

Ta thấy I K = r '  là bán kính đáy của hình chóp, A I = h  là chiều cao của hình chóp.

Tam giác  vuông tại KIK là đường cao

⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h

Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .

Áp dụng bất đẳng thức Cauchy ta có  

h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27

⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3

Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3   . Vậy ta chọn A