Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
electrong chuyển từ trạng thái dừng n = 3 xuống trạng thái dừng n =2 => nguyên tử hiđrô đã phát ra một năng lượng đúng bằng
\(\Delta E = E_{cao}-E_{thap}= -\frac{13,6}{3^2}-(-\frac{13,6}{2^2})= 13,6.(\frac{1}{4}-\frac{1}{9})= 1,89 eV= 1,89.1,6.10^{-19}V.\)
Mà \(\Delta E = \frac{hc}{\lambda}=> \lambda = \frac{hc}{\Delta E}= \frac{6,625.10^{-34}.3.10^8}{1,89.1,6.10^{-19}}= 6,57.10^{-7}m = 0,657 \mu m.\)
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
+ Áp dụng tiên đề Bo về hấp thụ và bức xạ năng lượng, ta có
Đáp án C
Phương pháp: Sử dụng lí thuyết về trạng thái dừng của nguyên tử hiđrô
Cách giải:
Áp dụng công thức
=> electron nhận thêm một lượng động năng để chuyển lên quỹ đạo ứng với n = 3
Bán kính quỹ đạo tăng thêm một lượng
Chọn C