Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A\(=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)
\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)
\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)
\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)
Ta có: tích 4 số chắn liên tiếp chia hết cho 384
=> đpcm
n chẵn => n=2k
\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)
Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24
\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)
n chẵn => n=2k ( k thuộc N)
\(A=n^3+4n=\left(2k\right)^3+4\left(2k\right)=8k^3+8k=8k\left(k^2+1\right)⋮16\)
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
ta có : \(n^4-4n^3-4n^2+16n=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n^3-4n\right)\left(n-4\right)=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)
th1: \(n=6\) ta có : \(n\left(n+2\right)\left(n-2\right)\left(n-4\right)=384⋮384\)
th2: giả sử \(n=2k\) với \(\left(k\in Z\backslash k>2\right)\)
thì ta có : \(2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)⋮384\)
vậy ta có khi \(n=2k+2\)
khi đó : \(n\left(n-2\right)\left(n+2\right)\left(n-4\right)=\left(2k+2\right)\left(2k\right)\left(2k+4\right)\left(2k-2\right)\)
tiếp đến là bn sử dụng phương pháp trên để chứng minh \(8\left(2k+2\right)\left(2k\right)\left(2k-2\right)⋮384\)
\(\Rightarrow\left(đpcm\right)\)