Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng khung dây hợp với đường cảm ứng từ một góc 300 => α= 600
\(\left|\phi\right|=\left|NBScos\alpha\right|=\left|1.5.10^{-2}.12.10^{-4}.cos60^0\right|=3.10^{-5}\)Wb
Từ thông cực đại: \(\phi_0=N.B.S = 2000.10^{-2}.0,2^2=0,8Wb\)
t = 0 chọn lúc mặt phẳng khung dây vuông góc với đường sức, có nghĩa véc tơ pháp tuyến của khung trùng với đường sức
\(\Rightarrow \varphi =0\)
Vậy biểu thức từ thông: \(\phi=0,8.\cos(100\pi t)(Wb)\)
a/ \(\phi=N.BS\cos\left(\overrightarrow{B};\overrightarrow{n}\right)=200.10^{-4}.20.10^{-4}.\cos30^0=2\sqrt{3}.10^{-5}\left(T.m^2\right)\)
b/ \(E_c=\left|\frac{\Delta\phi}{\Delta t}\right|=\left|\frac{-2\sqrt{3}.10^{-5}}{0,01}\right|=2\sqrt{3}.10^{-3}\left(V\right)\)
\(Q=\frac{E_c^2}{R}t=\frac{\left(2\sqrt{3}.10^{-3}\right)^2}{10}.0,01=12.10^{-9}\left(J\right)\)
c/ \(I=\frac{E_c}{R+R'}=\frac{2\sqrt{3}.10^{-3}}{10+2}=\frac{\sqrt{3}.10^{-3}}{6}\left(A\right)\)
Check lại phần tính toán hộ mình nhé, nhiều số quá hơi nhức mắt :(
câu 1
giải
suất điện động cảm ứng
\(e_c=r.i=5.2=10V\)
mặt khác: \(e_c=\left|\frac{\Delta\Phi}{\Delta t}\right|=\frac{\Delta B}{\Delta t}.S\)
suy ra : \(\frac{\Delta B}{\Delta t}=\frac{e_c}{S}=\frac{10}{0,1^2}=10^3T/s\)
Đáp án C