Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Theo điều kiện cân bằng: M F O = M P O
→ F.OB = P.OG
↔ F(AB – OA) = P(OA – AG)
↔ F(7,5 – 1,5) = 25.10.(1,5 – 1,2)
→ F = 12,5 N.
Đáp án B
Theo điều kiện cân bằng: MF/(O) = MP/(O)
→ F.OB = P.OG ↔ F(AB – OA) = P(OA – AG)
↔ F(7,5 – 1,5) = 25.10.(1,5 – 1,2)
→ F = 12,5 N.
Chọn B.
Theo điều kiện cân bằng: MF/(O) = MP/(O)
→ F.OB = P.OG
↔ F(AB – OA) = P(OA – AG)
↔ F(7,5 – 1,5) = 25.10.(1,5 – 1,2)
→ F = 12,5 N.
Ta có :
Trọng lực của thanh đặt ở trung điểm thanh (gọi G là trung điểm thanh AB)
Ta giải bài toán trong trường hợp tổng,
Áp dụng quy tắc momen trục quay tại B:
\(mg.BGsin\alpha=F.BA\)
\(\rightarrow F=mg\frac{BGsin\alpha}{BA}=50.10\frac{sin\alpha}{2}=250sin\alpha\)
Phản lực của tường phải cân bằng với F và P.
Phản lực theo phương ngang: \(N_x=F.sin\alpha\)
Phản lực theo phương thẳng đứng:\(N_y=mg-F.cos\alpha\)
Gọi góc hợp giữa phản lực và phương ngang là \(\phi\)
\(tan\phi=\frac{Ny}{Nx}=\frac{mg-Fcos\alpha}{Fsin\alpha}\)
\(=\frac{500-250sin\alpha.cosalpha}{250sinalpha^2}=\frac{2-sin\alpha.cosalpha}{sinalpha^2}\)
Độ lớn của phản lực:
\(N=\sqrt{N_x^2+N^2_y}=\sqrt{F^2+m^2g^2-2mgFcosalpha}\)
Trong 2 trường hợp góc α này chúng ta thay số và tìm các giá trị cần tìm
Ta có :
\(OG=AO-AG=1,5-1,2=0,3\left(m\right)\)
\(OB=AB-AO=7,8-1,5=6,3\left(m\right)\)
Hệ cân bằng nên :
\(M_P=M_F\)
\(\Leftrightarrow P.d_1=F.d_2\)
\(\Leftrightarrow P.OG=F.OB\)
\(\Leftrightarrow2100.0,3=F.6,3\)
\(\Leftrightarrow F=100N\)
Vậy phải tác dụng \(100N\) để thanh ấy nằm ngang