K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Sau một vụ, trung bình số cá trên mỗi đơn vị diện tích mặt hồ cân nặng: f n = n P n = 480 n - 20 n 3

f’(n) = 480 – 40n=0 → n = 12

Bảng biến thiên:

Trên mỗi đơn vị diện tích của mặt hồ, cần thả 12 con cá thì sau một vụ thu hoạch được nhiều gam cá nhất.

Đáp án A

23 tháng 9 2019

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

27 tháng 2 2016

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 
và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )Câu 1:(5đ)1. Cho \(a,b,c\) là số thực thỏa mãn:\(ab+bc+ca=2015\). Tính giá trị biểu thức:\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)2. Cho \(a,b,c\) là các số nguyên thỏa mãn:\(a^3+b^3=5c^3\)CMR: \(a+b+c\) chia hết cho \(6\)3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa...
Đọc tiếp

Đề thi HSG quận Đống Đa - Hà Nội vòng 2 ( một trong 2 đề khó nhất chỉ sau quận Cầu Giấy )

Câu 1:()

1. Cho \(a,b,c\) là số thực thỏa mãn:

\(ab+bc+ca=2015\). Tính giá trị biểu thức:

\(P=\frac{a}{2015+a^2}+\frac{b}{2015+b^2}+\frac{c}{2015+c^2}-\frac{4030}{2015\left(a+b+c\right)-abc}\)

2. Cho \(a,b,c\) là các số nguyên thỏa mãn:

\(a^3+b^3=5c^3\)

CMR: \(a+b+c\) chia hết cho \(6\)

3. Tìm các cặp \(\left(x;y\right)\) nguyên thỏa mãn:

\(x^2\left(y^2+1\right)+y^2+24=12xy\)

Câu 2:()

a) \(3x+\sqrt{5-x}=2\sqrt{x-3}+11\)

b) \(2x^2+4x-8=\left(2x+3\right)\sqrt{x^2-3}\)

Câu 3:()

Cho các số thực \(x,y\) thỏa mãn điều kiện:

\(x-\sqrt{x+1}=\sqrt{y+5}-y\)

Tìm GTLN của \(P=x+y\)

Câu 4:()

Qua \(M\) cố định ở ngoài đường tròn \(\left(O;R\right)\). Qua \(M\) kẻ các tiếp tuyến \(MA,MB\) ( \(A,B\) là các tiếp tuyến ). Qua \(P\) di động trên cung nhỏ \(AB\) ( \(P\) khác \(A;B\) ) dựng tiếp tuyến của \(\left(O\right)\) cắt \(MA,MB\) lần lượt tại \(E\) và \(F\).

a) CMR: Chu vi tam giác \(MEF\) không đổi khi \(P\) di động trên \(AB\).

b) Lấy \(N\) trên tiếp tuyến \(MA\) sao cho \(N,F\) khác phía \(AB\) và \(AN=BF\)CMR\(AB\) đi qua trung điểm của \(NF\).

c) Kẻ đường thẳng \(d\) qua \(M\) của \(\left(O\right)\) tại \(H\) và \(K\). Xác định vị trí của \(d\) để \(MH+HK\) đạt GTNN

Câu 5:()

1. Cho \(p\)là số nguyên tố thỏa mãn \(p^2+2018\) là số nguyên tố. CMR: \(6p^2+2015\) là số nguyên tố.

2. Cho tập \(x=\left\{1;2;3...;2015\right\}\). Tô màu các phần tử \(x\)bởi \(5\) màu: xanh, đỏ, vàng, tím, nâu. CMR tồn tại \(3\) phần tử \(a,b,c\) của \(x\)sao cho \(a\) là bội của \(b\)\(b\)là bội của \(c\)

 

 

5
29 tháng 11 2015

Lớp 9 hả bạn

Thanh nhiều nha

29 tháng 11 2015

Bạn còn đề nào không? Cho mình với

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

Sau nhiều năm suy nghĩ nát óc bầm não cuối cùng nhà bác học Anh-xờ-tanh (Einstein) đã cho ra đời một bài toán cực hóc búa. Xin mời những quả đầu thông thái vào đây thử sức, giải được nhớ cho mọi người phần giải thích cặn kẽ và... hiểu được (be able to understand) nhe!!!1. Có 5 ngôi nhà, mỗi nhà một màu khác nhau.2. Trong mỗi nhà có một người ở, mỗi người có quốc tịch khác nhau.3. Mỗi...
Đọc tiếp

Sau nhiều năm suy nghĩ nát óc bầm não cuối cùng nhà bác học Anh-xờ-tanh (Einstein) đã cho ra đời một bài toán cực hóc búa. Xin mời những quả đầu thông thái vào đây thử sức, giải được nhớ cho mọi người phần giải thích cặn kẽ và... hiểu được (be able to understand) nhe!!!

1. Có 5 ngôi nhà, mỗi nhà một màu khác nhau.
2. Trong mỗi nhà có một người ở, mỗi người có quốc tịch khác nhau.
3. Mỗi người thích uống một loại nước khác nhau, mỗi người hút một loại thuốc lá khác nhau và nuôi một loài vật khác nhau trong nhà của mình.
Câu hỏi đặt ra là: Ai nuôi cá ?

Biết rằng:
a. Người Anh sống trong nhà màu đỏ.
b. Người Thuỵ điển nuôi chó.
c. Người Đan mạch thích uống chè.
d. Người Đức hút thuốc lá nhãn Rothmanns.
e. Người Nauy sống trong ngôi nhà đầu tiên.
f. Người sống trong nhà xanh thích uống cà phê.
g. Người hút thuốc lá Winfield thích uống bia.
h. Người sống trong nhà vàng hút thuốc lá Dunhill.
i. Người hút thuốc lá Pall Mall nuôi vẹt trong nhà của mình.
j. Người sống trong ngôi nhà ở chính giữa thích uống sữa.
k. Người hút thuốc lá Marlboro sống bên cạnh người nuôi mèo.
l. Người hàng xóm của người hút Marlboro quen uống nước.
m. Người hút thuốc lá Dunhill sống bên cạnh người nuôi ngựa.
n. Ngôi nhà của người Nauy nằm bên cạnh nhà màu tím.
o. Ngôi nhà màu xanh nằm kế và bên trái (phía trước) nhà màu trắng.

2
27 tháng 4 2016

nhà người Đức nuôi cá.
giải thích: gọi 5 nhà lần lượt là 1,2,3,4,5
nhà 1 là nauy =>nhà 2 màu tím. nhà 3 uống sữa.nhà xanh bên trái nhà trắng mà nhà xanh uống cafe=>nhà 4 màu xanh.nhà 5 màu trắng
còn màu vàng và màu đỏ.nhà người anh màu đỏ=> nhà 3.(vì nhà 1 của nauy).nhà 1 màu vàng,hút thuốc dunhill=>nhà 2 nuôi ngựa
#xét xem nhà nào hút Winfield uống bia.(nhà 1 dunhill,nhà 3:uống sữa,nhà 4 cafe)=>nhà 2 hoặc 5
*th1:giả sử là nhà 2
+xét xem nhà nào hút marlboro.
nhà hút marlboro bên cạnh nhà nuôi mèo và bên cạnh nhà uống nước=>nhà 3 ko phải
-giả sử là nhà 4 hút marlboro
=>nhà 5 uống nước.vậy nhà uống chè là nhà số 1 (nhà uống chè là nhà của đan mạch mà nhà 1 của nauy=>trái với giả thuyết)
=>th1 loại
vậy nhà 5 hút Winfield uống bia
=>nhà 2 hút marlboro.=>nhà 1 uống nước,nuôi mèo=>nhà 2 uống chè người đan mạch
còn thuốc Pall Mall và Rothmanns. người đức hút Rothmanns => nhà 4.nhà 3 hút Pall Mall nuôi vẹt
=>nhà 5 thụy điển nuôi chó
kết luận nhà người đức nuôi cá

23 tháng 11 2016

Nhanh thế

4 tháng 2 2016

với a<b<c<d nha

 

14 tháng 3 2017

ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)

vậy Min A= c+d-a-b