Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.
Vậy Sxq = πrl = ( đơn vị diện tích)
Sđáy = = ( đơn vị diện tích);
Vnón = ( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
Theo giả thiết, = 600.
Ta có diện tích ∆ SBC là: S = (SI.BC)/2
Ta có SO + SI.sin600 = .
Vậy .
Ta có ∆ OIB vuông ở I và BO = r = ;
OI = SI.cos600 = .
Vậy BI = và BC = .
Do đó S = (SI.BC)/2 = (đơn vị diện tích)
gọi thiết diện là tam giác đềuSAB (S chính là đỉnh hình nón,do thiết diện đi qua trục
R=0,5.AB=\(\sqrt{2}\)a
S=πRl=π\(\sqrt{2}\)a.2 \(\sqrt{2}\)a=4\(a^2\)
Chọn C.
(h.2.61) Thiết diện qua trục là một tam giác vuông cân cạnh a nên đường sinh của hình nón là a và bán kính đáy là (a 2 )/2
Suy ra:
Đáp án B
Giả sử SAB là thiết diện qua trục của hình nón (như hình vẽ)
Tam giác SAB cân tại S và là tam giác cân nên SA = SB = a
Do đó:
Giả sử SAB là thiết diện qua trục của hình nón (như hình vẽ)
Tam giác SAB cân tại S và là tam giác cân nên SA = SB = a
Chọn B.
Thiết diện qua trục là một tam giác vuông cạnh a nên đường sinh của hình nón là l = a.
Đường kính của đường tròn đáy là: