Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Đáp án D
+ Fnmax = k(A - Dl) = 2 (1)
+ Fkmax = k(A + Dl) = 4 (2)
+ Lập tỉ số (1) và (2) ta được: A = 3Dl
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Biên độ dao động: $A = 4cm$
Tỉ số giữa lực đàn hồi cực đại và cực tiểu:
\(\dfrac{F_{max}}{F_{min}}=\dfrac{k(\Delta \ell_0+A)}{k(\Delta\ell_0-A)}=\dfrac{\Delta\ell_0+4}{\Delta\ell_0-4}=2\)
\(\Rightarrow \Delta\ell_0=12cm\)
Tần số dao động:
\(f=\dfrac{\omega}{2\pi}=\dfrac{1}{2\pi}\sqrt{\dfrac{g}{\Delta\ell_0}}=\dfrac{1}{2\pi}\sqrt{\dfrac{10}{0,12}}=1,44(hz)\)
Gia tốc cực đại của vật là: \(a_{max}=\omega^2.A=(2\pi)^2.20=80\pi^2(cm/s^2)\)
Chọn đáp án D