Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Chọn 4 bạn bất kì từ 3 lớp: \(C_{12}^4\)
Chọn 4 bạn ko có lớp A: \(C_9^4\)
Chọn 4 bạn ko có lớp B: \(C_8^4\)
Chọn 4 bạn ko có lớp C: \(C_7^4\)
Số cách thỏa mãn: \(C_{12}^4-\left(C_7^4+C_8^4+C_9^4\right)=...\)
b.
Chọn 4 bạn có đúng 1 bạn lớp A: \(C_3^1.C_9^3\)
Số các thỏa mãn:
\(C_{12}^4-\left(3.C_9^3+C_9^4\right)\)
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý mỗi khối đều có ít hơn 8 học sinh).
Số cách chọn 8 học sinh từ hai khối là: .
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Chọn D.
a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :
\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách:
\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\) cách:
Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.
b) Nếu trong \(5\) học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :
\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.
\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.
Còn lại bn tự lm nha, mỏi tay quá
Chọn B
TH1: Nhóm có đúng 3 học sinh có cách chọn
TH2: Nhóm có đúng 4 học sinh có cách chọn
TH3: Nhóm có đúng 5 học sinh có cách chọn
TH4: Nhóm có đúng 6 học sinh có cách chọn
TH5: Nhóm có đúng 7 học sinh có cách chọn
TH6: Nhóm có đúng 8 học sinh có cách chọn
TH7: Nhóm có đúng 9 học sinh có cách chọn
Vậy tổng số có 24 + 72 + 98 + 76 + 35 + 9 + 1 = 315 cách.
TH 1: 4 học sinh được chọn thuộc một lớp:
A: có cách chọn C 5 4 = 5
B: có cách chọn C 4 4 = 1
Trường hợp này có: 6 cách chọn.
TH 2: 4 học sinh được chọn thuộc hai lớp:
A và B: có C 9 4 - ( C 5 4 + C 4 4 ) = 120
B và C: có C 9 4 - C 4 4 = 125
C và A: có C 9 4 - C 5 4 = 121
Trường hợp này có 366 cách chọn.
Vậy có 366+6=372 cách chọn thỏa yêu cầu bài toán.
Chọn C.
Đáp án D