Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
Rút gọn:
\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)
\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)
\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)
\(M=\frac{x+1}{3x\left(x-1\right)}\)
a)
\(A=\frac{x^2-2x-x+2}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}\)
b)
+A> 0 => x>1 hoặc x < -2
+ A<0 => -2 <x<1
+A =0 => x =1
+A có nghĩa khi x khác 2 và -2
+A vô nghĩa khi x =2; x =-2
a: Để C vô nghĩa thì x+2=0
hay x=-2
Để C có nghĩa thì x+2<>0
hay x<>-2
\(C=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2}{x+2}\)
Để C=0 thì \(x\in\varnothing\)
Để C>0 thì x+2>0
hay x>-2
Để C<0 thì x+2<0
hay x<-2
b: \(C=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{2}{x+2}\)
a.
ĐKXĐ: \(x\ne\pm4\)
\(C=\left(\dfrac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right)\cdot\dfrac{\left(x+4\right)^2}{32}\) có lẽ là nhân
\(\dfrac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}\)
\(=\dfrac{32}{\left(x+4\right)\left(x-4\right)}\cdot\dfrac{\left(x+4\right)^2}{32}=\dfrac{x+4}{x-4}\)
b.
\(C=1\Leftrightarrow x+4=x-4\Leftrightarrow0=-8\left(vo-li\right)\)
c.
\(C=\dfrac{1}{3}\Leftrightarrow3\left(x+4\right)=x-4\Leftrightarrow2x=-16\Leftrightarrow x=-8\)
d.
\(C>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+4< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)
Luân Đàotran nguyen bao quanDƯƠNG PHAN KHÁNH DƯƠNG
KHUÊ VŨNguyễn Huy TúAkai HarumaAce LegonaNguyễn Thanh HằngMashiro Shiina giúp mk vs
a.\(ĐKXĐ:\hept{\begin{cases}x^2-2x\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-2\right)\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-1\end{cases}}}\)
b.\(M=\left(\frac{1}{x^2-2x}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}.\frac{x\left(x+1\right)}{2x+1}=\frac{x\left(2x+1\right)\left(x+1\right)}{x\left(x-2\right)\left(2x+1\right)}=\frac{x+1}{x-2}\)
c.Để \(M>1\)thì
\(\frac{x+1}{x-2}>1\)
c, Ta có : \(M>1\Rightarrow\frac{x+1}{x-2}>1\Leftrightarrow\frac{x+1}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+1-x+2}{x-2}>0\Leftrightarrow\frac{3}{x-2}>0\)
\(\Rightarrow x-2>0\Leftrightarrow x>2\)vì 3 > 0
d, Để M nguyên khi \(x+1⋮x-2\Leftrightarrow x-2+3⋮x-2\)ĐK : \(x\ne2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
\(M=\dfrac{13x^2-x^4-36}{x^3-5x^2+6x}\)
\(=\dfrac{-x^4+13x^2-36}{x\left(x^2-5x+6\right)}\)
\(=\dfrac{-x^4+9x^2+4x^2-36}{x\left(x^2-2x-3x+6\right)}\)
\(=\dfrac{-x^2\left(x^2-9\right)+4\left(x^2-9\right)}{x\cdot\left[x\left(x-2\right)-3\left(x-2\right)\right]}\)
\(=\dfrac{\left(-x^2+4\right)\left(x^2-9\right)}{x\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{\left(4-x^2\right)\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{\left(2-x\right)\left(2+x\right)\left(x+3\right)}{x\left(x-2\right)}\)
\(=\dfrac{-\left(x-2\right)\left(2+x\right)\left(x+3\right)}{x\left(x-2\right)}\)
\(=\dfrac{-\left(2+x\right)\left(x+3\right)}{x}\)
\(=\dfrac{-\left(2x+6+x^2+3x\right)}{x}\)
\(=\dfrac{-\left(5x+6+x^2\right)}{x}\)
\(=-\dfrac{5x+6+x^2}{x}\)
giúp mk câu b, c vs