Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với điều kiện x>0 ta có :
\(\Leftrightarrow\) \(\left(\log_2x-2\right)\left(\log_7x-1\right)=0\)
\(\Leftrightarrow\begin{cases}\log_2x-2=0\\\log_7x-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}\log_2x=2\\\log_7x=1\end{cases}\)
\(\Leftrightarrow\begin{cases}x=4\\x=7\end{cases}\)
Cùng thỏa mãn điều kiện x>0
Vậy phương trình có 2 nghiệm x=4; x=7
Ta có : \(\log_25=\log_23.\log_35=ab\)
\(\Rightarrow I=\log_{140}63=\frac{\log_263}{\log_2140}=\frac{\log_2\left(3^2.7\right)}{\log_2\left(2^2.5.7\right)}=\frac{2\log_23+\log_27}{2+\log_25+\log_27}=\frac{2a+c}{2+ab+c}\)
Ta có :
\(\begin{cases}5>1;3>1\Rightarrow\log_53>0\\15>1;4>1\Rightarrow\log_{15}4>0\\0< \frac{1}{3}< 1;\frac{7}{2}>1\Rightarrow\log_{\frac{1}{3}}\frac{14}{5}< 0\\0< 0,3< 1;\frac{7}{2}>1\Rightarrow\log_{0,3}\frac{7}{2}< 0\end{cases}\)
\(\Rightarrow A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}\log_{0,3}\frac{7}{2}}>0\)
Điều kiện :
\(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)
\(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)
\(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)
\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)
Vậy tập xác định là D = [-2;-1) U (2;7]
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Ta có :
\(\log_62-\frac{1}{2}\log_{\sqrt{6}}5=\log_62-\log_65=\log_6\frac{2}{5}\)
\(\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}=\left(\frac{1}{6}\right)^{\log_6\frac{2}{5}}=\left(6^{-1}\right)^{\log_6\frac{2}{5}}=6^{\log_6\frac{2}{5}}=\frac{5}{2}=\sqrt[3]{\left(\frac{5}{2}\right)^3}=\sqrt[3]{\frac{125}{8}}\)
Mà :
\(\sqrt[3]{\frac{125}{8}}>\sqrt[3]{\frac{124}{8}}\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}>\sqrt[3]{\frac{31}{2}}\)
\(\Rightarrow B=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}>0^{ }\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
\(log_{140}63=\frac{x.log_x3.log_7x+1}{log_x3.log_35.log_7x+x.log_7x+1}\)
\(\Leftrightarrow log_{140}63=\frac{x.log_73+1}{log_35.log_73+x.log_7x+1}\)
\(\Leftrightarrow\frac{log_763}{log_7140}=\frac{log_73^x+1}{log_75+log_7x^x+1}\)
\(\Leftrightarrow\frac{log_73^2+1}{log_75+log_72^2+1}=\frac{log_73^x+1}{log_75+log_7x^x+1}\)
\(\Leftrightarrow log_{140}\left(35x^x\right)=log_{63}\left(7.3^x\right)\)
Cái dòng cuối cùng quên xóa mất. Thôi tự hiểu đoạn đó nha