Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(z=x+yi\), ta được hệ phương trình :
\(\left\{{}\begin{matrix}x^2+\left(y-2\right)^2=x^2+y^2\\x^2+\left(y-1\right)^2=\left(x-1\right)^2+y^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=y\end{matrix}\right.\) \(\Rightarrow x=1,y=1\)
Vậy \(z=1+i\)
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-i|=|(1+i)z|\Leftrightarrow |a+i(b-1)|=|z||1+i|=|a+bi|\sqrt{2}\)
\(\Leftrightarrow a^2+(b-1)^2=2(a^2+b^2)\)
\(\Leftrightarrow a^2+(b+1)^2=2\)
Vậy tập hợp biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,-1)\) bán kính \(R=\sqrt{2}\)
Điều kiện \(z\ne0;\left|z\right|\ne1\)
\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)
\(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)
\(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)
Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :
\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)
\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)
\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)
Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện
Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện
Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)
suy ra (1-i)z= (4-5i)-(2-i)
(1-i)z =2-4i
z= (2-4i)/(1-i)
z= 3-i
Mọi điểm M biểu diễn z đều phải thỏa mãn 2 điều kiện: vừa thuộc đường tròn (C) vừa thuộc đường thẳng \(\Delta\) (tham số P)
Do đó, M là giao điểm của (C) và \(\Delta\)
Hay tham số P phải thỏa mãn sao cho (C) và \(\Delta\) có ít nhất 1 điểm chung
Hay hệ pt nói trên có nghiệm (thật ra chi tiết đó là thừa, chỉ cần biện luận (C) và \(\Delta\) có ít nhất 1 điểm chung \(\Rightarrow d\left(I;\Delta\right)\le R\) là đủ)
a) (3 + 4i)z = (2 + 5i) – (1 – 3i) = 1 + 8i
Vậy z=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45iz=1+8i3+4i=(1+8i)(3−4i)25=3525+2025i=75+45i
b) (4 + 7i)z – (5 – 2i) = 6iz ⇔ (4 + 7i)z – 6iz = 5 – 2i
⇔ (4 + i)z = 5 – 2i
⇔z=5−2i4+i=(5−2i)(4−i)17⇔z=1817−1317i
Giả sử: \(z=x+yi (x;y\in |R)\)
Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)
<=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)
<=>\(2x+2yi+2=3x-3yi+5i-i^2\)
<=>\((3x-2x+1-2)+(5-3y-2y)i=0\)
<=>\((x-1)+(5-5y)i=0\)
<=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)
<=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)
Suy ra: z=1+i =>|z|=\(\sqrt{2}\)
Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :
\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)
\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)
Tập hợp số z thỏa mãn là 1 elip nhận (0;1) và (0;-1) làm tiêu điểm
Cái này nằm ngoài chương trình phổ thông nên bạn đừng quan tâm