Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
Ta có \(\frac{x-3}{x+5}=\frac{5}{7}\)
=> 5( x + 5 ) = 7( x - 3 )
=> 5x + 25 = 7x - 21
=> 7x - 5x = 25 + 21
=> 2x = 46
=> x = 23
Bài 1:
\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)
\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)
Bài 2:
\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)
<=> \(\frac{7}{8}-x=\frac{27}{40}\)
<=> \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)
Vậy...
=(-1/2) : (-2/3) :( -3/4) :...: (-49/50)
= -1/2 . (-3/2) . (-4/3) . ... . (-50/49)
= -1/2.(-1/2) . (-50)
= - 1/100
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
a) \(\frac{45^{10}.5^{20}}{75^{15}}\)
=
\(\frac{\left(5.9\right)^{10}.5^{20}}{\left(5.15\right)^{15}}\)
= \(\frac{5^{10}.9^{10}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.3^{20}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.15^{20}}{5^{15}.15^{15}}\)
= \(\frac{15^5}{5^5}\)
= \(\frac{3^5.5^5}{5^5}\)
= \(3^5\)
b) \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
= \(\frac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)
= \(\frac{2^5}{0,4}\)
= \(2^5\) : 0,4
(=) 32 : \(\frac{2}{5}\)
= 90
c) \(\frac{2^{15}.9^4}{6^6.8^3}\)
= \(\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)
= \(\frac{2^{15}.3^8}{2^6.3^6.2^9}\)
= \(3^2\)