Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2+\sqrt{x}}{x-1}+\frac{2}{\sqrt{x}+1}\right)\div\frac{3}{x+\sqrt{x}}\)
a) ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{2+\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{3}\)
\(=\frac{x}{\sqrt{x}-1}\)
b) Xét biểu thức\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\)
Vì x > 1 nên áp dụng bất đẳng thức Cauchy ta có :
\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge2\sqrt{\frac{x}{\sqrt{x}-1}\cdot4\left(\sqrt{x}-1\right)}=2\sqrt{4x}=4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\sqrt{x}-4\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}\ge4\)
Đẳng thức xảy ra khi x = 4 ( tm )
=> MinA = 4 <=> x = 4
a. ĐKXĐ \(x\ge0\)và \(x\ne9\)
Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)
\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)
Vậy với \(0\le x< \frac{9}{4}\)thì K<-1
c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)
\(\Rightarrow K\ge-3\)
Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(Đkxđ:\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(\sqrt{x}-1\ne0\Rightarrow\sqrt{x}\ne1\Rightarrow x\ne1\)
\(\sqrt{x}\ne0\Rightarrow x\ne0\)
\(\RightarrowĐkxđ:x>0;x\ne1\)
\(A=\left(\frac{x\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\frac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\frac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}}\)
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\)\(:\left(1-\frac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\)\(\left(\frac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{2\sqrt{x}-2}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\right):\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}}.\frac{\sqrt{x}+1}{2\cdot\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(a,ĐKXĐ:x\ge0;x\ne1\)
\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(P=\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)
\(P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)
\(P=\left(x+1\right)^2\left(x-1\right)^2\)
\(P=\left[\left(x+1\right)\left(x-1\right)\right]^2\)
\(P=\left(x^2+x-x-1\right)^2\)
\(P=\left(x^2-1\right)^2\)
b, \(7-4\sqrt{3}=2^2-4\sqrt{3}+\sqrt{3}\)
\(\left(2-\sqrt{3}\right)^2\)
\(P=\left(x^2-1\right)^2< \left(2-\sqrt{3}\right)^2\)
\(x^2-1< 2-\sqrt{3}\)
\(x^2< 3-\sqrt{3}\)
\(x< \sqrt{3-\sqrt{3}}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\\1+\sqrt{x}\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có: \(P=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)}-\sqrt{x}\right)\)
\(P=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2=\left(x-1\right)^2\)
b) Với x > = 0 và x khác 1
Ta có: \(P< 7-4\sqrt{3}\)
<=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)
<=> \(\left(x-1-2+\sqrt{3}\right)\left(x-1+2-\sqrt{3}\right)< 0\)
<=> \(\left(x-3+\sqrt{3}\right)\left(x+1-\sqrt{3}\right)< 0\)
<=> \(\hept{\begin{cases}x-3+\sqrt{3}< 0\\x+1-\sqrt{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3+\sqrt{3}>0\\x+1-\sqrt{3}< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x< 3-\sqrt{3}\\x>\sqrt{3}-1\end{cases}}\) hoặc \(\hept{\begin{cases}x>3-\sqrt{3}\\x< \sqrt{3}-1\end{cases}}\)
<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)