K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 2 2021

Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)

Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm

Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)

TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn

TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb

Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử

\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)

\(\Leftrightarrow a=0\)

Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

NV
7 tháng 5 2020

Với \(m=0\) hệ có nghiệm \(x=1\)

Với \(m\ne0\)

Xét \(x^2-2x+1-m\le0\) (1)

\(\Delta'=m\Rightarrow\) để (1) có nghiệm thì \(m>0\Rightarrow1-\sqrt{m}\le x\le1+\sqrt{m}\) (3)

Xét \(f\left(x\right)=x^2-2\left(m+1\right)x+m^2+m\le0\) (2)

\(\Delta'=\left(m+1\right)^2-\left(m^2+m\right)=m+1\)

Với \(m>0\Rightarrow\) (2) có nghiệm \(m+1-\sqrt{m+1}\le x\le m+1+\sqrt{m+1}\) (4)

Khi \(m>0\Rightarrow m+1+\sqrt{m+1}>1+\sqrt{m}\)

\(\Rightarrow\) Để (3) giao (4) khác rỗng

\(\Leftrightarrow m+1-\sqrt{m+1}\le1+\sqrt{m}\)

\(\Leftrightarrow m-\sqrt{m}\le\sqrt{m+1}\)

- Với \(0< m\le1\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng

- Với \(m>1\) bình phương 2 vế:

\(\Leftrightarrow m^2-2m\sqrt{m}+m\le m+1\)

\(\Leftrightarrow m^2-2m\sqrt{m}-1\le0\)

\(t=\sqrt{m}\Rightarrow t^4-2t^3-1\le0\)

Rất tiếc BPT này ko giải được ^.^

NV
7 tháng 5 2020

Xét kiểu này toi mạng đấy, để BPT có nghiệm thì hợp nghiệm của BPT dưới và trên phải khác rỗng, hai BPT đều có nghiệm là chưa đủ đâu

\n\n

Ví dụ, BPT trên có nghiệm 1<x<2

\n\n

BPT dưới có nghiệm 3<x<4

\n\n

2 BPT đều có nghiệm nhưng hệ BPT lại vô nghiệm

\n
NV
12 tháng 4 2020

\(x^2-\left(2m+1\right)x+m^2+m\le0\)

\(\Leftrightarrow\left(x-m\right)\left(x-m-1\right)\le0\)

\(\Rightarrow m\le x\le m+1\)

Để hệ có nghiệm \(\Leftrightarrow f\left(x\right)=x^2-2x+1\le m\left(1\right)\) có nghiệm thuộc \(\left[m;m+1\right]\)

\(\Leftrightarrow m\ge\min\limits_{\left[m;m+1\right]}\left(x^2-2x+1\right)\)

- TH1: \(m\le1\le m+1\Rightarrow0\le m\le1\)

\(\Rightarrow f\left(x\right)_{min}=f\left(1\right)=0\Rightarrow m\ge0\Rightarrow0\le m\le1\)

- TH2: \(m>1\Rightarrow f\left(x\right)\) đồng biến trên \(\left[m;m+1\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(m\right)=m^2-2m+1\)

\(\Rightarrow m\ge m^2-2m+1\Leftrightarrow m^2-3m+1\le0\)

\(\Rightarrow\frac{3-\sqrt{5}}{2}\le m\le\frac{3+\sqrt{5}}{2}\)

Kết hợp điều kiên \(\Rightarrow1< m\le\frac{3+\sqrt{5}}{2}\)

Vậy với \(0\le m\le\frac{3+\sqrt{5}}{2}\) thì BPT đã cho có nghiệm