Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(-4x^2+5x-2\)
\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)
\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)
Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)
Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)
=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)
\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)
\(=16m^2+32m+16+4\left(1-4m^2\right)\)
\(=32m+20\)
Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)
=>32m+20<0
=>32m<-20
=>\(m< -\dfrac{5}{8}\)
Với \(m=0\) hệ có nghiệm \(x=1\)
Với \(m\ne0\)
Xét \(x^2-2x+1-m\le0\) (1)
\(\Delta'=m\Rightarrow\) để (1) có nghiệm thì \(m>0\Rightarrow1-\sqrt{m}\le x\le1+\sqrt{m}\) (3)
Xét \(f\left(x\right)=x^2-2\left(m+1\right)x+m^2+m\le0\) (2)
\(\Delta'=\left(m+1\right)^2-\left(m^2+m\right)=m+1\)
Với \(m>0\Rightarrow\) (2) có nghiệm \(m+1-\sqrt{m+1}\le x\le m+1+\sqrt{m+1}\) (4)
Khi \(m>0\Rightarrow m+1+\sqrt{m+1}>1+\sqrt{m}\)
\(\Rightarrow\) Để (3) giao (4) khác rỗng
\(\Leftrightarrow m+1-\sqrt{m+1}\le1+\sqrt{m}\)
\(\Leftrightarrow m-\sqrt{m}\le\sqrt{m+1}\)
- Với \(0< m\le1\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng
- Với \(m>1\) bình phương 2 vế:
\(\Leftrightarrow m^2-2m\sqrt{m}+m\le m+1\)
\(\Leftrightarrow m^2-2m\sqrt{m}-1\le0\)
\(t=\sqrt{m}\Rightarrow t^4-2t^3-1\le0\)
Rất tiếc BPT này ko giải được ^.^
Xét kiểu này toi mạng đấy, để BPT có nghiệm thì hợp nghiệm của BPT dưới và trên phải khác rỗng, hai BPT đều có nghiệm là chưa đủ đâu
\n\nVí dụ, BPT trên có nghiệm 1<x<2
\n\nBPT dưới có nghiệm 3<x<4
\n\n2 BPT đều có nghiệm nhưng hệ BPT lại vô nghiệm
\n\(x^2-\left(2m+1\right)x+m^2+m\le0\)
\(\Leftrightarrow\left(x-m\right)\left(x-m-1\right)\le0\)
\(\Rightarrow m\le x\le m+1\)
Để hệ có nghiệm \(\Leftrightarrow f\left(x\right)=x^2-2x+1\le m\left(1\right)\) có nghiệm thuộc \(\left[m;m+1\right]\)
\(\Leftrightarrow m\ge\min\limits_{\left[m;m+1\right]}\left(x^2-2x+1\right)\)
- TH1: \(m\le1\le m+1\Rightarrow0\le m\le1\)
\(\Rightarrow f\left(x\right)_{min}=f\left(1\right)=0\Rightarrow m\ge0\Rightarrow0\le m\le1\)
- TH2: \(m>1\Rightarrow f\left(x\right)\) đồng biến trên \(\left[m;m+1\right]\)
\(\Rightarrow f\left(x\right)_{min}=f\left(m\right)=m^2-2m+1\)
\(\Rightarrow m\ge m^2-2m+1\Leftrightarrow m^2-3m+1\le0\)
\(\Rightarrow\frac{3-\sqrt{5}}{2}\le m\le\frac{3+\sqrt{5}}{2}\)
Kết hợp điều kiên \(\Rightarrow1< m\le\frac{3+\sqrt{5}}{2}\)
Vậy với \(0\le m\le\frac{3+\sqrt{5}}{2}\) thì BPT đã cho có nghiệm
Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)
Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm
Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)
TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn
TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb
Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử
\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)
\(\Leftrightarrow a=0\)
Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)